Quantum information can be protected from decoherence and other errors, but only if these errors are sufficiently rare. For quantum computation to become a scalable technology, practical schemes for quantum error correction that can tolerate realistically high error rates will be necessary. In some physical systems, errors may exhibit a characteristic structure that can be carefully exploited to improve the efficacy of error correction. Here, we describe a scheme for topological quantum error correction to protect quantum information from a dephasing-biased error model, where we combine a repetition code with a topological cluster state. We find that the scheme tolerates error rates of up to 1.37%-1.83% per gate, requiring only short-range interactions in a two-dimensional array.