No Arabic abstract
We report experimental and numerical evidences that the dynamics of the director of a liquid crystal driven by an electric field close to the critical point of the Freedericksz Transition(FT) is not described by a Landau-Ginzburg (LG) equation as it is usually done in literature. The reasons are related to the very crude approximations done to obtain this equation, to the finite value of the anchoring energy and to small asymmetries on boundary conditions. We also discuss the difference between the use of LG equation for the statics and the dynamics. These results are useful in all cases where FT is used as an example for other orientational transitions.
We investigate the phase behavior of a single-component system in 3 dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature {bf 409}, 692 (2001)] that, even with no evidences of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas--low-density liquid (LDL) critical point, and the other in a gas--high-density liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the 3-parameter space of the soft-core potential and we perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.
We report phase separation and liquid-crystal ordering induced by scalar activity in a system of Soft Repulsive Spherocylinders (SRS) of aspect ratio $L/D = 5 $. Activity was introduced by increasing the temperature of half of the SRS (labeled textit{`hot}) while maintaining the temperature of the other half constant at a lower value (labeled textit{`cold}). The difference between the two temperatures scaled by the lower temperature provides a measure of the activity. Starting from different equilibrium initial phases, we find that activity leads to segregation of the hot and cold particles. Activity also drives the cold particles through a phase transition to a more ordered state and the hot particles to a state of less order compared to the initial equilibrium state. The cold components of a homogeneous isotropic (I) structure acquire nematic (N) and, at higher activity, crystalline (K) order. Similarly, the cold zone of a nematic initial state undergoes smectic (Sm) and crystal ordering above a critical value of activity while the hot component turns isotropic. We find that the hot particles occupy a larger volume and exert an extra kinetic pressure, confining, compressing and provoking an ordering transition of the cold-particle domains.
Within the framework of liquid crystal flows, the Qian & Sheng (QS) model for Q-tensor dynamics is compared to the Volovik & Kats (VK) theory of biaxial nematics by using Hamiltons variational principle. Under the assumption of rotational dynamics for the Q-tensor, the variational principles underling the two theories are equivalent and the conservative VK theory emerges as a specialization of the QS model. Also, after presenting a micropolar variant of the VK model, Rayleigh dissipation is included in the treatment. Finally, the treatment is extended to account for nontrivial eigenvalue dynamics in the VK model and this is done by considering the effect of scaling factors in the evolution of the Q-tensor.
We study the flow behaviour of a twist-bend nematic $(N_{TB})$ liquid crystal. It shows three distinct shear stress ($sigma$) responses in a certain range of temperatures and shear rates ($dot{gamma}$). In Region-I, $sigmasimsqrt{dot{gamma}}$, in region-II, the stress shows a plateau, characterised by a power law $sigmasim{dot{gamma}}^{alpha}$, where $alphasim0.1-0.4$ and in region-III, $sigmasimdot{gamma}$. With increasing shear rate, $sigma$ changes continuously from region-I to II, whereas it changes discontinuously with a hysteresis from region-II to III. In the plateau (region-II), we observe a dynamic stress fluctuations, exhibiting regular, periodic and quasiperiodic oscillations under the application of steady shear. The observed spatiotemporal dynamics in our experiments are close to those were predicted theoretically in sheared nematogenic fluids.
By the Wolffs cluster Monte Carlo simulations and numerical minimization within a mean field approach, we study the low temperature phase diagram of water, adopting a cell model that reproduces the known properties of water in its fluid phases. Both methods allows us to study the water thermodynamic behavior at temperatures where other numerical approaches --both Monte Carlo and molecular dynamics-- are seriously hampered by the large increase of the correlation times. The cluster algorithm also allows us to emphasize that the liquid--liquid phase transition corresponds to the percolation transition of tetrahedrally ordered water molecules.