No Arabic abstract
This paper re-introduces the network reliability polynomial - introduced by Moore and Shannon in 1956 -- for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from ErdH{o}s-Renyi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable.
In a recent work [Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], the authors proposed a simple measure for network robustness under malicious attacks on nodes. With a greedy algorithm, they found the optimal structure with respect to this quantity is an onion structure in which high-degree nodes form a core surrounded by rings of nodes with decreasing degree. However, in real networks the failure can also occur in links such as dysfunctional power cables and blocked airlines. Accordingly, complementary to the node-robustness measurement ($R_{n}$), we propose a link-robustness index ($R_{l}$). We show that solely enhancing $R_{n}$ cannot guarantee the improvement of $R_{l}$. Moreover, the structure of $R_{l}$-optimized network is found to be entirely different from that of onion network. In order to design robust networks resistant to more realistic attack condition, we propose a hybrid greedy algorithm which takes both the $R_{n}$ and $R_{l}$ into account. We validate the robustness of our generated networks against malicious attacks mixed with both nodes and links failure. Finally, some economical constraints for swapping the links in real networks are considered and significant improvement in both aspects of robustness are still achieved.
Online social media have greatly affected the way in which we communicate with each other. However, little is known about what are the fundamental mechanisms driving dynamical information flow in online social systems. Here, we introduce a generative model for online sharing behavior that is analytically tractable and which can reproduce several characteristics of empirical micro-blogging data on hashtag usage, such as (time-dependent) heavy-tailed distributions of meme popularity. The presented framework constitutes a null model for social spreading phenomena which, in contrast to purely empirical studies or simulation-based models, clearly distinguishes the roles of two distinct factors affecting meme popularity: the memory time of users and the connectivity structure of the social network.
A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti-Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the nodes degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the nodes degree. We illustrate our algorithm using various empirical networks.
We present a new layout algorithm for complex networks that combines a multi-scale approach for community detection with a standard force-directed design. Since community detection is computationally cheap, we can exploit the multi-scale approach to generate network configurations with close-to-minimal energy very fast. As a further asset, we can use the knowledge of the community structure to facilitate the interpretation of large networks, for example the network defined by protein-protein interactions.
The compartmental models used to study epidemic spreading often assume the same susceptibility for all individuals, and are therefore, agnostic about the effects that differences in susceptibility can have on epidemic spreading. Here we show that--for the SIS model--differential susceptibility can make networks more vulnerable to the spread of diseases when the correlation between a nodes degree and susceptibility are positive, and less vulnerable when this correlation is negative. Moreover, we show that networks become more likely to contain a pocket of infection when individuals are more likely to connect with others that have similar susceptibility (the network is segregated). These results show that the failure to include differential susceptibility to epidemic models can lead to a systematic over/under estimation of fundamental epidemic parameters when the structure of the networks is not independent from the susceptibility of the nodes or when there are correlations between the susceptibility of connected individuals.