Do you want to publish a course? Click here

Optical Observations of PSR J0205+6449 - the next optical pulsar?

128   0   0.0 ( 0 )
 Added by Andy Shearer
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

PSR J0205+6449 is a young ({approx} 5400 years), Crab-like pulsar detected in radio and at X and {gamma}-ray energies and has the third largest spin-down flux among known rotation powered pulsars. It also powers a bright synchrotron nebula detected in the optical and X-rays. At a distance of {approx} 3.2 kpc and with an extinction comparable to the Crab, PSR J0205+6449 is an obvious target for optical observations. We observed PSR J0205+6449 with several optical facilities, including 8m class ground-based telescopes, such as the Gemini and the Gran Telescopio Canarias. We detected a point source, at a significance of 5.5{sigma}, of magnitude i {approx} 25.5, at the centre of the optical synchrotron nebula, coincident with the very accurate Chandra and radio positions of the pulsar. Thus, we discovered a candidate optical counterpart to PSR J0205+6449. The pulsar candidate counterpart is also detected in the g ({approx}27.4) band and weakly in the r ({approx}26.2) band. Its optical spectrum is fit by a power law with photon index {Gamma}0 = 1.9{pm}0.5, proving that the optical emission if of non-thermal origin, is as expected for a young pulsar. The optical photon index is similar to the X-ray one ({Gamma}X = 1.77{pm}0.03), although the optical fluxes are below the extrapolation of the X-ray power spectrum. This would indicate the presence of a double spectral break between the X-ray and optical energy range, at variance with what is observed for the Crab and Vela pulsars, but similar to the Large Magellanic Cloud pulsar PSR B0540-69.



rate research

Read More

182 - L. Kuiper 2010
PSR J0205+6449 is a young rotation-powered pulsar in SNR 3C 58. It is one of only three young (<10,000 year old) pulsars which are so far detected in the radio and the classical X-ray bands, as well as at hard X-rays above 20 keV and at high-energy (>100 MeV) $gamma$-rays. The other two young pulsars are the Crab and PSR B1509-58. Our aim is to derive the timing and spectral characteristics of PSR J0205+6449 over the broad X-ray band from ~0.5 to ~270 keV. We used all publicly available RXTE observations of PSR J0205+6449 to first generate accurate ephemerides over the period September 30, 2000 - March 18, 2006. Next, phase-folding procedures yielded pulse profiles using data from RXTE PCA and HEXTE, and XMM-Newton EPIC PN. While our timing solutions are consistent with earlier results, our work shows sharper structures in the PCA X-ray profile. The X-ray pulse profile consists of two sharp pulses, separated in phase by 0.488(2), which can be described with 2 asymmetric Lorentzians, each with the rising wing steeper than the trailing wing, and full-width-half-maximum 1.41(5) ms and 2.35(22) ms, respectively. We find an indication for a flux increase by a factor ~2, about 3.5 sigma above the time-averaged value, for the second, weaker pulse during a two-week interval, while its pulse shape did not change. The spectrum of the pulsed X-ray emission is of non-thermal origin, exhibiting a power-law shape with photon index Gamma = 1.03(2) over the energy band ~0.5 to ~270 keV. In the energy band covered with the PCA (~3-30 keV) the spectra of the two pulses have the same photon index, namely, 1.04(3) and 1.10(8), respectively.
We report on sensitive phase-referenced and gated 1.4-GHz VLBI radio observations of the pulsar PSR J0205+6449 in the young pulsar-wind nebula 3C 58, made in 2007 and 2010. We employed a novel technique where the ~105-m Green Bank telescope is used simultaneously to obtain single-dish data used to determine the pulsars period as well as to obtain the VLBI data, allowing the VLBI correlation to be gated synchronously with the pulse to increase the signal-to-noise. The high timing noise of this young pulsar precludes the determination of the proper motion from the pulsar timing. We derive the position of the pulsar accurate at the milliarcsecond level, which is consistent with a re-determined position from the Chandra X-ray observations. We reject the original tentative optical identification of the pulsar by Shearer and Neustroev (2008), but rather identify a different optical counterpart on their images, with R-band magnitude ~24. We also determine an accurate proper motion for PSR J0205+6449 of (2.3 +- 0.3) mas/yr, corresponding to a projected velocity of only (35 +- 6) km/s for a distance of 3.2 kpc, at p.a. -38 deg. This projected velocity is quite low compared to the velocity dispersion of known pulsars of ~200 km/s. Our measured proper motion does not suggest any particular kinematic age for the pulsar.
116 - S. V. Zharikov 2002
We report the B band optical observations of an old (17.5 Myr) radiopulsar PSR B0950+08 obtained with the Suprime-Cam at the Subaru telescope. We detected a faint object, B=27.07(16). Within our astrometrical accuracy it coincides with the radio position of the pulsar and with the object detected earlier by Pavlov et al. (1996) in UV with the HST/FOC/F130LP. The positional coincidence and spectral properties of the object suggest that it is the optical counterpart of PSR B0950+08. Its flux in the B band is two times higher than one would expect from the suggested earlier Rayleigh-Jeans interpretation of the only available HST observations in the adjacent F130LP band. Based on the B and F130LP photometry of the suggested counterpart and on the available X-ray data we argue in favour of nonthermal origin of the broad-band optical spectrum of PSR B0950+08, as it is observed for the optical emission of the younger, middle-aged pulsars PSR B0656+14 and Geminga. At the same time, the optical efficiency of PSR B0950+08, estimated from its spin-down power and the detected optical flux, is by several orders of magnitude higher than for these pulsars, and comparable with that for the much younger and more energetic Crab pulsar. We cannot exclude the presence of a compact, about 1, faint pulsar nebula around PSR B0950+08, elongated perpendicular to the vector of its proper motion, unless it is not a projection of a faint extended object on the pulsar position.
The Fermi Large Area Telescope (LAT) discovered the time signature of a radio-silent pulsar coincident with RX J0007.0+7302, a plerion-like X-ray source at the centre of the CTA 1 supernova remnant. The inferred timing parameters of the gamma-ray pulsar PSR J0007+7303 (P=315.8 ms; dot{P}sim3.6 10^{-13} s s^{-1}) point to a Vela-like neutron star, with an age comparable to that of CTA 1. The PSR J0007+7303 low distance (sim 1.4 kpc), interstellar absorption (A_Vsim 1.6), and relatively high energy loss rate (dot{E} sim4.5 10^{35} erg s^{-1}), make it a suitable candidate for an optical follow-up. Here, we present deep optical observations of PSR J0007+7303. The pulsar is not detected in the Gran Telescopio Canarias (GTC) images down to a limit of rsim 27.6 (3 sigma), the deepest ever obtained for this pulsar, while William Herschel Telescope (WHT) images yield a limit of V sim 26.9. Our r-band limit corresponds to an optical emission efficiency eta_{opt}= L_{opt}/dot{E} < 9.4 10^{-8}. This limit is more constraining than those derived for other Vela-like pulsars, but is still above the measured optical efficiency of the Vela pulsar. We compared the optical upper limits with the extrapolation of the XMM-Newton X-ray spectrum and found that the optical emission is compatible with the extrapolation of the X-ray power-law component, at variance with what is observed, e.g. in the Vela pulsar.
We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hundreds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا