Do you want to publish a course? Click here

MAGIC discovery and multiwavelength observations of the BL Lac 1ES 1727+502

107   0   0.0 ( 0 )
 Added by Karsten Berger
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Blazars, active galactic nuclei whose jet axis is pointed towards the observer, constitute the most numerous class of extragalactic very high energy (VHE, E > 100, GeV) gamma-ray emitters. The MAGIC experiment, a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary Island of La Palma (Northern hemisphere), with an energy threshold of 50 GeV, is a well suited experiment for observations of such objects. Here we present the discovery of the BL Lac 1ES 1727+502 (z = 0.055) as VHE source. This object was identified as a promising TeV candidate based on archival data and the observation that lead to this detection was not triggered by any high state alert in other wavebands. The MAGIC observations are complemented by other observations are lower frequencies: optical data from the KVA telescope, UV, optical and X-ray archival data taken with the instruments on board the Swift satellite and high energy (HE, 300 MeV < E < 100 GeV) data from the textit{Fermi}-LAT instrument. We studied the spectral energy distribution of 1ES 1727+502 and interpreted it with a one-zone synchrotron self-Compton model with parameters that are typical for this class of sources.



rate research

Read More

During moonlit nights, observations with ground-based Cherenkov telescopes at very high energies (VHE, $E>100$ GeV) are constrained since the photomultiplier tubes (PMTs) in the telescope camera are extremely sensitive to the background moonlight. Observations with the VERITAS telescopes in the standard configuration are performed only with a moon illumination less than 35$%$ of full moon. Since 2012, the VERITAS collaboration has implemented a new observing mode under bright moonlight, by either reducing the voltage applied to the PMTs (reduced-high-voltage configuration, RHV), or by utilizing UV-transparent filters. While these operating modes result in lower sensitivity and increased energy thresholds, the extension of the available observing time is useful for monitoring variable sources such as blazars and sources requiring spectral measurements at the highest energies. In this paper we report the detection of $gamma$-ray flaring activity from the BL Lac object 1ES 1727+502 during RHV observations. This detection represents the first evidence of VHE variability from this blazar. The integral flux is $(1.1pm0.2)times10^{-11}mathrm{cm^{-2}s^{-1}}$ above 250 GeV, which is about five times higher than the low-flux state. The detection triggered additional veritas observations during standard dark-time. Multiwavelength observations with the FLWO 48 telescope, and the Swift and Fermi satellites are presented and used to produce the first spectral energy distribution (SED) of this object during $gamma$-ray flaring activity. The SED is then fitted with a standard synchrotron-self-Compton model, placing constraints on the properties of the emitting region and of the acceleration mechanism at the origin of the relativistic particle population in the jet.
Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) gamma-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE gamma-ray emission from 1ES 1727+502 at a statistical significance of 5.5 sigma. The integral flux above 150 GeV is estimated to be (2.1pm0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7pm0.5). No significant short-term variability was found in any of the wavebands presented here. We model the SED using a one-zone synchrotron self-Compton model obtaining parameters typical for this class of sources.
The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with a statistical significance of 10.4 standard deviations (10.4 sigma) for the observations taken during the first three months of 2007, confirming the discovery of this object made by the MAGIC collaboration. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34_stat +/- 0.2_sys. The integral flux is Phi(E > 200 GeV) = (12.2 +/- 2.6) X 10^-12 cm^-2 s^-1, which corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light in the near to mid-infrared we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum has an index that is harder than Gamma = 2.32 +/- 0.37_stat. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37_stat.
We present results from multiwavelength observations of the BL Lacertae object 1ES 1741+196, including results in the very-high-energy $gamma$-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well-modelled by a power law with a spectral index of $2.7pm0.7_{mathrm{stat}}pm0.2_{mathrm{syst}}$. The integral flux above 180 GeV is $(3.9pm0.8_{mathrm{stat}}pm1.0_{mathrm{syst}})times 10^{-8}$ m$^{-2}$ s$^{-1}$, corresponding to 1.6% of the Crab Nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.
1ES 0414+009 (z = 0.287) is a distant high-frequency-peaked BL Lac object, and has long been considered a likely emitter of very-high energy (VHE, E>100 GeV) gamma-rays due to its high X-ray and radio flux. Observations in the VHE gamma-ray band and across the electromagnetic spectrum can provide insights into the origin of highly energetic particles present in the source and the radiation processes at work. Because of the distance of the source, the gamma-ray spectrum might provide further limits on the level of the Extragalactic Background Light (EBL). We report observations made between October 2005 and December 2009 with H.E.S.S., an array of four imaging atmospheric Cherenkov telescopes. Observations at high energies (HE, 100 MeV - 100 GeV) with the Fermi-LAT instrument in the first 20 months of its operation are also reported. To complete the multi-wavelength picture, archival UV and X-ray observations with the Swift satellite and optical observations with the ATOM telescope are also used. Based on the observations with H.E.S.S., 1ES 0414+009 is detected for the first time in the VHE band. An excess of 224 events is measured, corresponding to a significance of 7.8 sigma. The photon spectrum of the source is well described by a power law, with photon index of 3.45 pm 0.25stat pm 0.20syst. The integral flux above 200 GeV is (1.88 pm 0.20stat pm 0.38syst) times10-12 cm-2 s-1. Observations with the Fermi-LAT in the first 20 months of operation show a flux between 200 MeV and 100 GeV of (2.3 pm 0.2stat) times 10-9 erg cm-2 s-1, and a spectrum well described by a power-law function with a photon index 1.85 pm 0.18. Swift/XRT observations show an X-ray flux between 2 and 10 keV of (0.8 - 1) times 10-11 erg cm-2 s-1, and a steep spectrum (2.2 - 2.3). Combining X-ray with optical-UV data, a fit with a log-parabolic function locates the synchrotron peak around 0.1 keV. ...
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا