Do you want to publish a course? Click here

Congruences for Ramanujans f and {omega} functions via generalized Borcherds products

201   0   0.0 ( 0 )
 Added by Robert Grizzard
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Bruinier and Ono recently developed the theory of generalized Borcherds products, which uses coefficients of certain Maass forms as exponents in infinite product expansions of meromorphic modular forms. Using this, one can use classical results on congruences of modular forms to obtain congruences for Maass forms. In this note we work out the example of Ramanujans mock theta functions f and {omega} in detail.



rate research

Read More

Given an infinite set of special divisors satisfying a mild regularity condition, we prove the existence of a Borcherds product of non-zero weight whose divisor is supported on these special divisors. We also show that every meromorphic Borcherds product is the quotient of two holomorphic ones. The proofs of both results rely on the properties of vector valued Eisenstein series for the Weil representation.
We present some applications of the Kudla-Millson and the Millson theta lift. The two lifts map weakly holomorphic modular functions to vector valued harmonic Maass forms of weight $3/2$ and $1/2$, respectively. We give finite algebraic formulas for the coefficients of Ramanujans mock theta functions $f(q)$ and $omega(q)$ in terms of traces of CM-values of a weakly holomorphic modular function. Further, we construct vector valued harmonic Maass forms whose shadows are unary theta functions, and whose holomorphic parts have rational coefficients. This yields a rationality result for the coefficients of mock theta functions, i.e., harmonic Maass forms whose shadows lie in the space of unary theta functions. Moreover, the harmonic Maass forms we construct can be used to evaluate the Petersson inner products of unary theta functions with harmonic Maass forms, giving formulas and rationality results for the Weyl vectors of Borcherds products.
We show that every Fricke invariant meromorphic modular form for $Gamma_0(N)$ whose divisor on $X_0(N)$ is defined over $mathbb{Q}$ and supported on Heegner divisors and the cusps is a generalized Borcherds product associated to a harmonic Maass form of weight $1/2$. Further, we derive a criterion for the finiteness of the multiplier systems of generalized Borcherds products in terms of the vanishing of the central derivatives of $L$-function of certain weight $2$ newforms. We also prove similar results for twisted Borcherds products.
We define a new parameter $A_{k,n}$ involving Ramanujans theta-functions for any positive real numbers $k$ and $n$ which is analogous to the parameter $A_{k,n}$ defined by Nipen Saikia cite{NS1}. We establish some modular relation involving $A_{k,n}$ and $A_{k,n}$ to find some explicit values of $A_{k,n}$. We use these parameters to establish few general theorems for explicit evaluations of ratios of theta functions involving $varphi(q)$.
In this paper we apply results from the theory of congruences of modular forms (control of reducible primes, level-lowering), the modularity of elliptic curves and Q-curves, and a couple of Frey curves of Fermat-Goldbach type, to show the existence of newforms of weight 2 and trivial nebentypus with coefficient fields of arbitrarily large degree and square-free or almost square-free level. More precisely, we prove that for any given numbers t and B, there exists a newform f of weight 2 and trivial nebentypus whose level N is square-free (almost square-free), N has exactly t prime divisors (t odd prime divisors and a small power of 2 dividing it, respectively), and the degree of the field of coefficients of f is greater than B.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا