No Arabic abstract
U-spin symmetry predicts equal CP rate asymmetries with opposite signs in pairs of $Delta S=0$ and $Delta S=1$ $B$ meson decays in which initial and final states are related by U-spin reflection. Of particular interest are six decay modes to final states with pairs of charged pions or kaons, including $B_s to pi^+K^-$ and $B_sto K^+K^-$ for which asymmetries have been reported recently by the LHCb collaboration. After reviewing the current status of these predictions, highlighted by the precision of a relation between asymmetries in $B_s to pi^+K^-$ and $B^0to K^+pi^-$, we perform a perturbative study of U-spin breaking corrections, searching for relations for combined asymmetries which hold to first order. No such relation is found in these six decays, in two-body decays involving a neutral kaon, and in three-body $B^+$ decays to charged pions and kaons.
CP asymmetries have been measured recently by the LHCb collaboration in three-body $B^+$ decays to final states involving charged pions and kaons. Large asymmetries with opposite signs at a level of about 60% have been observed in $B^pmto pi^pm({rm or} K^pm)pi^+pi^-$ and $B^pm to pi^pm K^+K^-$ for restricted regions in the Dalitz plots involving $pi^+pi^-$ and $K^+K^-$ with low invariant mass. U-spin is shown to predict corresponding $Delta S=0$ and $Delta S=1$ asymmetries with opposite signs and inversely proportional to their branching ratios, in analogy with a successful relation predicted thirteen years ago between asymmetries in $B_sto K^-pi^+$ and $B^0 to K^+ pi^-$. We compare these predictions with the measured integrated asymmetries. Effects of specific resonant or non-resonant partial waves on enhanced asymmetries for low-pair-mass regions of the Dalitz plot are studied in $B^pm to pi^pm pi^+pi^-$. The closure of low-mass $pi^+pi^-$ and $K^+K^-$ channels involving only $pipi leftrightarrow Kbar K$ rescattering may explain by CPT approximately equal magnitudes and opposite signs measured in $B^pmto pi^pmpi^+pi^-$ and $B^pm to pi^pm K^+K^-$.
BaBar collaboration announced that they observed time reversal (T) asymmetry through $B$ meson system. In the experiment, time dependencies of two distinctive processes, $B_- rightarrow bar{B^0}$ and $bar{B^0}rightarrow B_-$($-$ expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of $epsilon_K$ is extracted and gives rise to $mathcal{O}(10^{-3})$ contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of $B_d$ meson, CPT violation, etc. We also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.
Complete error analysis for first high-precision flavor test in D decays
Some years ago, a method was proposed for measuring the CP-violating phase gamma using pairs of two-body decays that are related by U-spin reflection (d <-> s). In this paper we adapt this method to charmless B -> PPP decays. Time-dependent Dalitz-plot analyses of these three-body decays are required for the measurement of the mixing-induced CP asymmetries. However, isobar analyses of the decay amplitudes are not necessary. A potential advantage of using three-body decays is that the effects of U-spin breaking may be reduced by averaging over the Dalitz plot. This can be tested independently using the measurements of direct CP asymmetries and branching ratios in three-body charged B decays.
We propose CP asymmetries based on triple product correlations in the decays sbottom_m -> top chargino_j with subsequent decays of top and chargino_j. For the subsequent chargino_j decay into a leptonic final state l^- u neutralino_1 we consider the three possible decay chains chargino_j -> l^- sneutrino -> l^- u neutralino_1, chargino_j -> slepton_n u -> l^- u neutralino_1 and chargino_j -> W^- neutralino_1 -> l^- u neutralino_1. We consider two classes of CP asymmetries. In the first class it must be possible to distinguish between different leptonic chargino_j decay chains, whereas in the second class this is not necessary. We consider also the 2-body decay chargino_j -> W^- neutralino_1, and we assume that the momentum of the W boson can be measured. Our framework is the minimal supersymmetric standard model with complex parameters. The proposed CP asymmetries are non-vanishing due to non-zero phases for the parameters mu and/or A_b. We present numerical results and estimate the observability of these CP asymmetries.