In the spirit of Lehmers unresolved speculation on the nonvanishing of Ramanujans tau-function, it is natural to ask whether a fixed integer is a value of $tau(n)$ or is a Fourier coefficient $a_f(n)$ of any given newform $f(z)$. We offer a method, which applies to newforms with integer coefficients and trivial residual mod 2 Galois representation, that answers this question for odd integers. We determine infinitely many spaces for which the primes $3leq ellleq 37$ are not absolute values of coefficients of newforms with integer coefficients. For $tau(n)$ with $n>1$, we prove that $$tau(n) ot in {pm 1, pm 3, pm 5, pm 7, pm 13, pm 17, -19, pm 23, pm 37, pm 691},$$ and assuming GRH we show for primes $ell$ that $$tau(n) ot in left { pm ell : 41leq ellleq 97 {textrm{with}} left(frac{ell}{5}right)=-1right} cup left { -11, -29, -31, -41, -59, -61, -71, -79, -89right}. $$ We also obtain sharp lower bounds for the number of prime factors of such newform coefficients. In the weight aspect, for powers of odd primes $ell$, we prove that $pm ell^m$ is not a coefficient of any such newform $f$ with weight $2k>M^{pm}(ell,m)=O_{ell}(m)$ and even level coprime to $ell,$ where $M^{pm}(ell,m)$ is effectively computable.
We compute the E-polynomials of a family of twisted character varieties by proving they have polynomial count, and applying a result of N. Katz on the counting functions. To compute the number of GF(q)-points of these varieties as a function of q, we used a formula of Frobenius. Our calculations made use of the character tables of Gl(n,q) and Sl(n,q), previously computed by J. A. Green and G. Lehrer, and a result of Hanlon on the Mobius function of a subposet of set-partitions. The Euler Characteristics of these character varieties are calculated with these polynomial.
In this paper, we consider the distribution of the continuous paths of Dirichlet character sums modulo prime $q$ on the complex plane. We also find a limiting distribution as $q rightarrow infty$ using Steinhaus random multiplicative functions, stating properties of this random process. This is motivated by Kowalski and Sawins work on Kloosterman paths.