Do you want to publish a course? Click here

Magnetic instability induced by Rh-doping in Kondo semiconductor CeRu$_2$Al$_{10}$

179   0   0.0 ( 0 )
 Added by Hanjie Guo Mr.
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic ground state of Rh-doped Kondo semiconductor CeRu$_2$Al$_{10}$ [Ce(Ru$_{1-x}$Rh$_x$)$_2$Al$_{10}$] is investigated by muon-spin relaxation method. Muon-spin precession with two frequencies is observed in the $x$ = 0 sample, while only one frequency is present in the $x$ = 0.05 and 0.1 samples, which is attributed to the broad static field distribution at the muon site. The internal field at the muon site is enhanced from about 180 G in $x$ = 0 sample to about 800 G in the Rh-doped samples, supporting the spin-flop transition as suggested by macroscopic measurements, and the boundary of different magnetic ground states is identified around $x$ = 0.03. The drastic change of magnetic ground state by a small amount of Rh-doping (3%) indicates that the magnetic structure in CeRu$_2$Al$_{10}$ is not robust and can be easily tuned by external perturbations such as electron doping. The anomalous temperature dependence of internal field in CeRu$_2$Al$_{10}$ is suggested to be attributed to the hyperfine interaction between muons and conduction electrons.

rate research

Read More

We studied the transport properties of CeRu_2Al_10 single crystals. All the transport properties show largely anisotropic behaviors below T_0. Those along the a- and c-axes show similar behaviors, but are different from those along the b-axis. This suggests that the system could be viewed as a two-dimensional system. The results of the thermal conductivity and thermoelectric power could be explained by assuming the singlet ground state below T_0. However, the ground state is not simple but has some kind of structure within a spin gap.
A Kondo semiconductor CeRu$_2$Al$_{10}$ with an orthorhombic crystal structure shows an unusual antiferromagnetic ordering at rather high temperature $T_0$ of 27.3 K, which is lower than the Kondo temperature $T_{rm K}sim$ 60 K. In optical conductivity [$sigma(omega)$] spectra that directly reflect electronic structure, the $c$-$f$ hybridization gap between the conduction and $4f$ states is observed at around 40 meV along the three principal axes. However, an additional peak at around 20 meV appears only along the $b$ axis. With increasing $x$ to 0.05 in Ce(Ru$_{1-x}$Rh$_x$)$_2$Al$_{10}$, the $T_0$ decreases slightly from 27.3 K to 24 K, but the direction of the magnetic moment changes from the $c$ axis to the $a$ axis. Thereby, the $c$-$f$ hybridization gap in the $sigma(omega)$ spectra is strongly suppressed, but the intensity of the 20-meV peak remains as strong as for $x=0$. These results suggest that the change of the magnetic moment direction originates from the decreasing of the $c$-$f$ hybridization intensity. The magnetic ordering temperature $T_0$ is not directly related to the $c$-$f$ hybridization but is related to the charge excitation at 20 meV observed along the $b$ axis.
We report a systematic study of the $5d$-electron-doped system Ce(Fe$_{1-x}$Ir$_x$)$_2$Al$_{10}$ ($0 leq x leq 0.15$). With increasing $x$, the orthorhombic $b$~axis decreases slightly while accompanying changes in $a$ and $c$ leave the unit cell volume almost unchanged. Inelastic neutron scattering, along with thermal and transport measurements, reveal that for the Kondo semiconductor CeFe$_2$Al$_{10}$, the low-temperature energy gap which is proposed to be a consequence of strong $c mhyphen f$ hybridization, is suppressed by a small amount of Ir substitution for Fe, and that the system adopts a metallic ground state with an increase in the density of states at the Fermi level. The charge or transport gap collapses (at $x=$~0.04) faster than the spin gap with Ir substitution. Magnetic susceptibility, heat capacity, and muon spin relaxation measurements demonstrate that the system undergoes long-range antiferromagnetic order below a Neel temperature, $T_{mathrm{N}}$, of 3.1(2)~K for $x = 0.15$. The ordered moment is estimated to be smaller than 0.07(1)~$mu_mathrm{B}$/Ce although the trivalent state of Ce is confirmed by Ce L$_3$-edge x-ray absorption near edge spectroscopy. It is suggested that the $c mhyphen f$ hybridization gap, which plays an important role in the unusually high ordering temperatures observed in Ce$T_2$Al$_{10}$ ($T$ = Ru and Os), may not be necessary for the onset of magnetic order with a low $T_{mathrm{N}}$ seen here in Ce(Fe$_{1-x}$Ir$_x$)$_2$Al$_{10}$.
The Kondo semiconductor CeOs$_{2}$Al$_{10}$ exhibits an antiferromagnetic (AFM) order at $T_mathrm{N}= 28.5$ K, whose temperature is unexpectedly high for the small ordered moment of $0.3$ $mu_mathrm{B}/$Ce. We have studied the effects of electron- and hole-doping on the hybridization gap and AFM order by measuring the magnetization $M$, magnetic susceptibility $chi$, electrical resistivity $rho$, and specific heat $C$ on single crystals of Ce(Os$_{1-x}$Ir$_{x}$)$_{2}$Al$_{10}$($x le 0.15$) and Ce(Os$_{1-y}$Re$_{y}$)$_{2}$Al$_{10}$($y le 0.1$). The results of $M (B)$ indicates that the AFM ordered moment $mu_mathrm{AF}$ changes the direction from the $c$-axis for $x = 0$ to the $a$-axis for $x = 0.03$. With increasing $x$ up to 0.15, $T_mathrm{N}$ gradually decreases although the $4f$ electron state becomes localized and the magnitude of $mu_mathrm{AF}$ is increased to $1$ $mu_mathrm{B}/$Ce. With increasing $y$, the $4f$ electron state is more delocalized and the AFM order disappears at a small doping level $y = 0.05$. In both electron- and hole-doped systems, the suppression of $T_mathrm{N}$ is well correlated with the increase of the Sommerfeld coefficient $gamma$ in $C(T)$. Furthermore, the simultaneous suppression of $T_mathrm{N}$ and the semiconducting gap in $rho (T)$ at $T > T_mathrm{N}$ indicates that the presence of the hybridization gap is indispensable for the unusual AFM order in CeOs$_{2}$Al$_{10}$.
An anisotropic Kondo semiconductor CeOs$_2$Al$_{10}$ exhibits an unusual antiferromagnetic order at rather high transition temperature $T_0$ of 28.5 K. Two possible origins of the magnetic order have been proposed so far, one is the Kondo coupling of the hybridization between the conduction ($c$) and the $4f$ states and the other is the charge-density wave/charge ordering along the orthorhombic $b$ axis. To clarify the origin of the magnetic order, we have investigated the electronic structure of hole- and electron-doped CeOs$_2$Al$_{10}$ [Ce(Os$_{1-y}$Re$_y$)$_2$Al$_{10}$ and Ce(Os$_{1-x}$Ir$_x$)$_2$Al$_{10}$, respectively] by using optical conductivity spectra along the $b$ axis. The intensity of the $c$-$f$ hybridization gap at $hbaromegasim50$ meV continuously decreases from $y=0.10$ to $x=0.12$ via $x=y=0$. The intensity of the charge excitation observed at $hbaromegasim20$ meV has the maximum at $x=y=0$ as similar with the doping dependence of $T_{rm 0}$. The fact that the charge excitation is strongly related to the magnetic order strengthens the possibility of the charge density wave/charge ordering as the origin of the magnetic order.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا