Do you want to publish a course? Click here

X-ray cross-correlation analysis of liquid crystal membranes in the vicinity of hexatic-smectic phase transition

242   0   0.0 ( 0 )
 Added by Ivan Vartaniants
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an x-ray study of liquid crystal membranes in the vicinity of hexatic-smectic phase transition by means of angular x-ray cross-correlation analysis (XCCA). By applying two-point angular intensity cross-correlation functions to the measured series of diffraction patterns the parameters of bond-orientational (BO) order in hexatic phase were directly determined. The temperature dependence of the positional correlation lengths was analyzed as well. The obtained correlation lengths show larger values for the higher-order Fourier components of BO order. These findings indicate a strong coupling between BO and positional order that has not been studied in detail up to now.



rate research

Read More

X-ray diffraction studies of the bond-orientational order in the hexatic-B phase of 75OBC and 3(10)OBC compounds are presented. The temperature evolution of an angular profile of a single diffraction peak is analyzed. Close to the hexatic-B-smectic-A transition these profiles can be approximated by the Gaussian function. At lower temperatures in the hexatic-B phase the profiles are better fitted by the Voigt function. Theoretical analysis of the width of diffraction peaks in three-dimentional (3D) hexatics is performed on the basis of the effective Hamiltonian introduced by Aharony and Kardar. Theoretical estimations are in good agreement with the results of x-ray experiments.
We report on X-ray studies of freely suspended hexatic films of three different liquid crystal compounds. By applying angular X-ray cross-correlation analysis (XCCA) to the measured diffraction patterns the parameters of the bond-orientational (BO) order in the hexatic phase were directly determined. The temperature evolution of the BO order parameters was analyzed on the basis of the multicritical scaling theory (MCST). Our results confirmed the validity of the MCST in the whole temperature range of existence of the hexatic phase for all three compounds. The temperature dependence of the BO order parameters in the vicinity of the hexatic-smectic transition was fitted by a conventional power law with a critical exponent $betaapprox0.1$ of extremely small value. We found that the temperature dependence of higher order harmonics of the BO order scales as the powers of the first harmonic, with exponent equal to harmonic number. This indicates a nonlinear coupling of the BO order parameters of different order. It is shown that compounds of various composition, possessing different phase sequences, display the same thermodynamic behavior in the hexatic phase and in the vicinity of the smectic-hexatic phase transition.
Liquid crystals offer many unique opportunities to study various phase transitions with continuous symmetry in the presence of quenched random disorder (QRD). The QRD arises from the presence of porous solids in the form of a random gel network. Experimental and theoretical work support the view that for fixed (static) inclusions, quasi-long-range smectic order is destroyed for arbitrarily small volume fractions of the solid. However, the presence of porous solids indicates that finite-size effects could play some role in limiting long-range order. In an earlier work, the nematic - smectic-A transition region of octylcyanobiphenyl (8CB) and silica aerosils was investigated calorimetrically. A detailed x-ray study of this system is presented in the preceding Paper I, which indicates that pseudo-critical scaling behavior is observed. In the present paper, the role of finite-size scaling and two-scale universality aspects of the 8CB+aerosil system are presented and the dependence of the QRD strength on the aerosil density is discussed.
Experimental and theoretical studies of a smectic-hexatic transition in freely suspended films of 54COOBC compound are presented. X-ray investigations revealed a discontinuous first-order transition into the hexatic phase. Moreover, the temperature region of two phase coexistence near the phase transition point diminishes with film thickness. The coexistence width dependence on film thickness was derived on the basis of the Landau mean-field theory in the vicinity of the tricritical point (TCP). Close to TCP the surface hexatic ordering penetrates anomalously deep into the film interior.
We develop a theory of Smectic A - Smectic C phase transition with anomalously weak smectic layer contraction. We construct a phenomenological description of this transition by generalizing the Chen-Lubensky model. Using a mean-field molecular model, we demonstrate that a relatively simple interaction potential suffices to describe the transition. The theoretical results are in excellent agreement with experimental data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا