Do you want to publish a course? Click here

StochDecomp - Matlab package for noise decomposition in stochastic biochemical systems

218   0   0.0 ( 0 )
 Added by Michal Komorowski
 Publication date 2013
  fields Biology
and research's language is English




Ask ChatGPT about the research

Stochasticity is an indispensable aspect of biochemical processes at the cellular level. Studies on how the noise enters and propagates in biochemical systems provided us with nontrivial insights into the origins of stochasticity, in total however they constitute a patchwork of different theoretical analyses. Here we present a flexible and generally applicable noise decomposition tool, that allows us to calculate contributions of individual reactions to the total variability of a systems output. With the package it is therefore possible to quantify how the noise enters and propagates in biochemical systems. We also demonstrate and exemplify using the JAK-STAT signalling pathway that it is possible to infer noise contributions resulting from individual reactions directly from experimental data. This is the first computational tool that allows to decompose noise into contributions resulting from individual reactions.



rate research

Read More

The phenomena of stochasticity in biochemical processes have been intriguing life scientists for the past few decades. We now know that living cells take advantage of stochasticity in some cases and counteract stochastic effects in others. The source of intrinsic stochasticity in biomolecular systems are random timings of individual reactions, which cumulatively drive the variability in outputs of such systems. Despite the acknowledged relevance of stochasticity in the functioning of living cells no rigorous method have been proposed to precisely identify sources of variability. In this paper we propose a novel methodology that allows us to calculate contributions of individual reactions into the variability of a systems output. We demonstrate that some reactions have dramatically different effects on noise than others. Surprisingly, in the class of open conversion systems that serve as an approximate model of signal transduction, the degradation of an output contributes half of the total noise. We also demonstrate the importance of degradation in other relevant systems and propose a degradation feedback control mechanism that has the capability of an effective noise suppression. Application of our method to some well studied biochemical systems such as: gene expression, Michaelis-Menten enzyme kinetics, and the p53 system indicates that our methodology reveals an unprecedented insight into the origins of variability in biochemical systems. For many systems an analytical decomposition is not available; therefore the method has been implemented as a Matlab package and is available from the authors upon request.
We present a kinetic Monte Carlo method for simulating chemical transformations specified by reaction rules, which can be viewed as generators of chemical reactions, or equivalently, definitions of reaction classes. A rule identifies the molecular components involved in a transformation, how these components change, conditions that affect whether a transformation occurs, and a rate law. The computational cost of the method, unlike conventional simulation approaches, is independent of the number of possible reactions, which need not be specified in advance or explicitly generated in a simulation. To demonstrate the method, we apply it to study the kinetics of multivalent ligand-receptor interactions. We expect the method will be useful for studying cellular signaling systems and other physical systems involving aggregation phenomena.
RNA 3D architectures are stabilized by sophisticated networks of (non-canonical) base pair interactions, which can be conveniently encoded as multi-relational graphs and efficiently exploited by graph theoretical approaches and recent progresses in machine learning techniques. RNAglib is a library that eases the use of this representation, by providing clean data, methods to load it in machine learning pipelines and graph-based deep learning models suited for this representation. RNAglib also offers other utilities to model RNA with 2.5D graphs, such as drawing tools, comparison functions or baseline performances on RNA applications. The method and data is distributed as a fully documented pip package. Availability: https://rnaglib.cs.mcgill.ca
Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate, using decision-making by a large population of quorum sensing bacteria, that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.
Food-webs and other classes of ecological network motifs, are a means of describing feeding relationships between consumers and producers in an ecosystem. They have application across scales where they differ only in the underlying characteristics of the organisms and substrates describing the system. Mathematical modelling, using mechanistic approaches to describe the dynamic behaviour and properties of the system through sets of ordinary differential equations, has been used extensively in ecology. Models allow simulation of the dynamics of the various motifs and their numerical analysis provides a greater understanding of the interplay between the system components and their intrinsic properties. We have developed the MI-Sim software for use with MATLAB to allow a rigorous and rapid numerical analysis of several common ecological motifs. MI-Sim contains a series of the most commonly used motifs such as cooperation, competition and predation. It does not require detailed knowledge of mathematical analytical techniques and is offered as a single graphical user interface containing all input and output options. The tools available in the current version of MI-Sim include model simulation, steady- state existence and stability analysis, and basin of attraction analysis. The software includes seven ecological interaction motifs and seven growth function models. Unlike other system analysis tools, MI-Sim is designed as a simple and user-friendly tool specific to ecological population type models, allowing for rapid assessment of their dynamical and behavioural properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا