Do you want to publish a course? Click here

Relative entropy is an exact measure of non-Gaussianity

141   0   0.0 ( 0 )
 Added by Tudor A. Marian
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove that the closest Gaussian state to an arbitrary $N$-mode field state through the relative entropy is built with the covariance matrix and the average displacement of the given state. Consequently, the relative entropy of an $N$-mode state to its associate Gaussian one is an exact distance-type measure of non-Gaussianity. In order to illustrate this finding, we discuss the general properties of the $N$-mode Fock-diagonal states and evaluate their exact entropic amount of non-Gaussianity.



rate research

Read More

We introduce a measure of quantum non-Gaussianity (QNG) for those quantum states not accessible by a mixture of Gaussian states in terms of quantum relative entropy. Specifically, we employ a convex-roof extension using all possible mixed-state decompositions beyond the usual pure-state decompositions. We prove that this approach brings a QNG measure fulfilling the properties desired as a proper monotone under Gaussian channels and conditional Gaussian operations. As an illustration, we explicitly calculate QNG for the noisy single-photon states and demonstrate that QNG coincides with non-Gaussianity of the state itself when the single-photon fraction is sufficiently large.
151 - Tzu-Chieh Wei 2004
As two of the most important entanglement measures--the entanglement of formation and the entanglement of distillation--have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessary. Here, connections between two other entanglement measures--the relative entropy of entanglement and the geometric measure of entanglement--are investigated. It is found that for arbitrary pure states the latter gives rise to a lower bound on the former. For certain pure states, some bipartite and some multipartite, this lower bound is saturated, and thus their relative entropy of entanglement can be found analytically in terms of their known geometric measure of entanglement. For certain mixed states, upper bounds on the relative entropy of entanglement are also established. Numerical evidence strongly suggests that these upper bounds are tight, i.e., they are actually the relative entropy of entanglement.
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing condition in the Gibbs measure associated to their dynamics, via a quasi-factorization of the entropy in terms of the conditional entropy in some sub-$sigma$-algebras. In this work we analyze analogous quasi-factorization results in the quantum case. For that, we define the quantum conditional relative entropy and prove several quasi-factorization results for it. As an illustration of their potential, we use one of them to obtain a positive log-Sobolev constant for the heat-bath dynamics with product fixed point.
Given two pairs of quantum states, a fundamental question in the resource theory of asymmetric distinguishability is to determine whether there exists a quantum channel converting one pair to the other. In this work, we reframe this question in such a way that a catalyst can be used to help perform the transformation, with the only constraint on the catalyst being that its reduced state is returned unchanged, so that it can be used again to assist a future transformation. What we find here, for the special case in which the states in a given pair are commuting, and thus quasi-classical, is that this catalytic transformation can be performed if and only if the relative entropy of one pair of states is larger than that of the other pair. This result endows the relative entropy with a fundamental operational meaning that goes beyond its traditional interpretation in the setting of independent and identical resources. Our finding thus has an immediate application and interpretation in the resource theory of asymmetric distinguishability, and we expect it to find application in other domains.
We suggest an improved version of Robertson-Schrodinger uncertainty relation for canonically conjugate variables by taking into account a pair of characteristics of states: non-Gaussianity and mixedness quantified by using fidelity and entropy, respectively. This relation is saturated by both Gaussian and Fock states, and provides strictly improved bound for any non-Gaussian states or mixed states. For the case of Gaussian states, it is reduced to the entropy-bounded uncertainty relation derived by Dodonov. Furthermore, we consider readily computable measures of both characteristics, and find weaker but more readily accessible bound. With its generalization to the case of two-mode states, we show applicability of the relation to detect entanglement of non-Gaussian states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا