Do you want to publish a course? Click here

Optical and magnetic properties of ZnCoO layers

337   0   0.0 ( 0 )
 Added by Elzbieta Guziewicz
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical and magneto-optical properties of ZnCoO films grown at low temperature by Atomic Layer Deposition are discussed. Strong wide band absorption, with onset at about 2.4 eV, is observed in ZnCoO in addition to Co-related intra-shell transitions. This absorption band is related to Co 2+ to 3+ photo-ionization transition. A strong photoluminescence (PL) quenching is observed, which we relate to Co recharging in ZnO lattice. Mechanisms of PL quenching are discussed.



rate research

Read More

ZnCoO is one of the most studied and promising semiconductor materials for spintronics applications. In this work we discuss optical and electrical properties of ZnCoO films and nanoparticles grown at low temperature by either Atomic Layer Deposition or by a microwave driven hydrothermal method. We report that doping with Cobalt quenches a visible photoluminescence (PL) of ZnO. We could observe a visible PL of ZnO only for samples with very low Co fractions (up to 1%). Mechanisms of PL quenching in ZnCoO are discussed. We also found that ZnO films remained n-type conductive after doping with Co, indicating that a high electron concentration and Cobalt 2+ charge state can coexist.
In the present study we report on properties of ZnCoO films grown at relatively low temperature by the Atomic Layer Deposition, using two reactive organic zinc precursors (dimethylzinc and diethylzinc). The use of these precursors allowed us the significant reduction of a growth temperature to below 300oC. The influence of growth conditions on the Co distribution in ZnCoO films, their structure and magnetic properties was investigated using Secondary Ion Mass Spectroscopy, Scanning Electron Microscopy, Cathodoluminescence, Energy Dispersive X-ray Spectrometry (EDX), X-ray diffraction and Superconducting Quantum Interference Device magnetometry. We achieved high uniformity of the films grown at 160{deg}C. Such films are paramagnetic. Films grown at 200{deg} and at higher temperature are nonuniform. Formation of foreign phases in such films was detected using high resolution EDX method. These samples are not purely paramagnetic and show weak ferromagnetic response at low temperature.
We investigate the interplay between the structural reconstruction and the magnetic properties of Fe doublelayers on Ir (111)-substrate using first-principles calculations based on density functional theory and mapping of the total energies on an atomistic spin model. We show that, if a second Fe monolayer is deposited on Fe/Ir (111), the stacking may change from hexagonal close-packed to bcc (110)-like accompanied by a reduction of symmetry from trigonal to centered rectangular. Although the bcc-like surface has a lower coordination, we find that this is the structural ground state. This reconstruction has a major impact on the magnetic structure. We investigate in detail the changes in the magnetic exchange interaction, the magnetocrystalline anisotropy, and the Dzyaloshinskii Moriya interaction depending on the stacking sequence of the Fe double-layer. Based on our findings, we suggest a new technique to engineer Dzyaloshinskii Moriya interactions in multilayer systems employing symmetry considerations. The resulting anisotropic Dzyaloshinskii-Moriya interactions may stabilize higher-order skyrmions or antiskyrmions.
Using electrodeposition, we have grown nanowires of ZnCoO with Cu codoping concentrations varying from 4-10 at.%, controlled only by the deposition potential. We demonstrate control over magnetic Co oxide nano-precipitate formation in the nanowires via the Cu concentration. The different magnetic behavior of the Co oxide nano-precipitates indicates the potential of ZnCoO for magnetic sensor applications.
The effect of gold capping on magnetic and transport properties of optimally doped manganite thin films is studied. An extraordinary suppression of conductivity and magnetic properties occurs in epitaxial (001) La_0.67Sr_0.33MnO_3 (LSMO) films grown on SrTiO_3 upon deposition of 2 nm of Au: in the case of ultrathin films of LSMO (4 nm thick) the resistivity increases by four orders of magnitude while the Curie temperature decreases by 180 K. Zero-field 55Mn nuclear magnetic resonance reveals a significant reduction of ferromagnetic double-exchange mechanism in manganite films upon the gold capping. We find evidence for the formation of a 1.9-nm thick magnetic dead-layer at the Au/LSMO interface, associated with the creation of interfacial non double-exchange insulating phases.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا