Do you want to publish a course? Click here

Kernel estimates for nonautonomous Kolmogorov equations

190   0   0.0 ( 0 )
 Added by Luca Lorenzi
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients.



rate research

Read More

120 - L. Lorenzi 2009
We consider a class of nonautonomous elliptic operators ${mathscr A}$ with unbounded coefficients defined in $[0,T]timesR^N$ and we prove optimal Schauder estimates for the solution to the parabolic Cauchy problem $D_tu={mathscr A}u+f$, $u(0,cdot)=g$.
126 - M. Kunze , L. Lorenzi , A. Lunardi 2008
We study a class of elliptic operators $A$ with unbounded coefficients defined in $ItimesCR^d$ for some unbounded interval $IsubsetCR$. We prove that, for any $sin I$, the Cauchy problem $u(s,cdot)=fin C_b(CR^d)$ for the parabolic equation $D_tu=Au$ admits a unique bounded classical solution $u$. This allows to associate an evolution family ${G(t,s)}$ with $A$, in a natural way. We study the main properties of this evolution family and prove gradient estimates for the function $G(t,s)f$. Under suitable assumptions, we show that there exists an evolution system of measures for ${G(t,s)}$ and we study the first properties of the extension of $G(t,s)$ to the $L^p$-spaces with respect to such measures.
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in $ItimesR^d$, where $I$ is a right-halfline. We prove logarithmic Sobolev and Poincare inequalities with respect to an associated evolution system of measures ${mu_t: t in I}$, and we deduce hypercontractivity and asymptotic behaviour results for the evolution operator $G(t,s)$.
We study the degenerate Kolmogorov equations (also known as kinetic Fokker-Planck equations) in nondivergence form. The leading coefficients $a^{ij}$ are merely measurable in $t$ and satisfy the vanishing mean oscillation (VMO) condition in $x, v$ with respect to some quasi-metric. We also assume boundedness and uniform nondegeneracy of $a^{ij}$ with respect to $v$. We prove global a priori estimates in weighted mixed-norm Lebesgue spaces and solvability results. We also show an application of the main result to the Landau equation. Our proof does not rely on any kernel estimates.
For a class of divergence type quasi-linear degenerate parabolic equations with a Radon measure on the right hand side we derive pointwise estimates for solutions via nonlinear Wolff potentials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا