Do you want to publish a course? Click here

Back-scatter based whispering gallery mode sensing

177   0   0.0 ( 0 )
 Added by Warwick Bowen
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whispering gallery mode biosensors allow selective unlabelled detection of single proteins and, combined with quantum limited sensitivity, the possibility for noninvasive realtime observation of motor molecule motion. However, to date technical noise sources, most particularly low frequency laser noise, have constrained such applications. Here we introduce a new technique for whispering gallery mode sensing based on direct detection of back-scattered light. This experimentally straightforward technique is immune to frequency noise in principle, and further, acts to suppress thermorefractive noise. We demonstrate 27 dB of frequency noise suppression, eliminating frequency noise as a source of sensitivity degradation and allowing an absolute frequency shift sensitivity of 76 kHz. Our results open a new pathway towards single molecule biophysics experiments and ultrasensitive biosensors.



rate research

Read More

Detection and characterization of individual nano-scale particles, virions, and pathogens are of paramount importance to human health, homeland security, diagnostic and environmental monitoring[1]. There is a strong demand for high-resolution, portable, and cost-effective systems to make label-free detection and measurement of individual nanoparticles, molecules, and viruses [2-6]. Here, we report an easily accessible, real-time and label-free detection method with single nanoparticle resolution that surpasses detection limit of existing micro- and nano-photonic devices. This is achieved by using an ultra-narrow linewidth whispering gallery microlaser, whose lasing line undergoes frequency splitting upon the binding of individual nano-objects. We demonstrate detection of polystyrene and gold nanoparticles as small as 15 nm and 10 nm in radius, respectively, and Influenza A virions by monitoring changes in self-heterodyning beat note of the split lasing modes. Experiments are performed in both air and aqueous environment. The built-in self-heterodyne interferometric method achieved in a microlaser provides a self-reference scheme with extraordinary sensitivity [7,8], and paves the way for detection and spectroscopy of nano-scale objects using micro- and nano-lasers.
Whispering gallery mode (WGM) resonators are compelling optical devices, however they are nearly unexplored in the terahertz (THz) domain. In this letter, we report on THz WGMs in quartz glass bubble resonators with sub-wavelength wall thickness. An unprecedented study of both the amplitude and phase of THz WGMs is presented. The coherent THz frequency domain measurements are in excellent agreement with a simple analytical model and results from numerical simulations. A high finesse of 9 and a quality (Q) factor exceeding 440 at 0.47 THz are observed. Due to the large evanescent field the high Q-factor THz WGM bubble resonators can be used as a compact, highly sensitive sensor in the intriguing THz frequency range.
We have demonstrated a 165 micron oblate spheroidal microcavity with free spectral range 383.7 GHz (3.06nm), resonance bandwidth 25 MHz (Q ~ 10^7) at 1550nm, and finesse F > 10^4. The highly oblate spheroidal dielectric microcavity combines very high Q-factor, typical of microspheres, with vastly reduced number of excited whispering-gallery (WG) modes (by two orders of magnitude). The very large free spectral range in the novel microcavity - few hundred instead of few GigaHertz in typical microspheres - is desirable for applications in spectral analysis, narrow-linewidth optical and RF oscillators, and cavity QED.
We develop a compact whispering-gallery-mode (WGM) sensing system by integrating multiple components, including a tunable laser, a temperature controller, a function generator, an oscilloscope, a photodiode detector, and a testing computer, into a phone-sized embedded system. We demonstrate a thermal sensing experiment by using this portable system. Such a system successfully eliminates bulky measurement equipment required for characterizing optical resonators and will open up new avenues for practical sensing applications by using ultra-high Q WGM resonators.
Whispering gallery mode (WGM) microresonators, benefitting from the ultrahigh quality (Q) factors and small mode volumes, could considerably enhance the light-matter interaction, making it an ideal platform for studying a broad range of nonlinear optical effects. In this review, the progress of optical nonlinear effects in WGM microresonators is comprehensively summarized. First, several basic nonlinear effects in WGM microresonator are reviewed, including not only Pockels effect and Kerr effect, but also harmonic generations, four-wave mixing and stimulated optical scattering effects. Apart from that, nonlinearity induced by thermal effect and in PT-symmetric systems are also discussed. Furthermore, multistep nonlinear optical effects by cascading several nonlinear effects are reviewed, including frequency comb generations. Several selected applications of optical nonlinearity in WGM resonators are finally introduced, such as narrow-linewidth microlasers, nonlinearity induced non-reciprocity and frequency combs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا