Do you want to publish a course? Click here

Spatial extension of excitons in triphenylene based polymers given by range-separated functionals

119   0   0.0 ( 0 )
 Added by Thomas Niehaus
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by an experiment in which the singlet-triplet gap in triphenylene based copolymers was effectively tuned, we used time dependent density functional theory (TDDFT) to reproduce the main results. By means of conventional and long-range corrected exchange correlation functionals, the luminescence energies and the exciton localization were calculated for a triphenylene homopolymer and several different copolymers. The phosphorescence energy of the pure triphenylene chain is predicted accurately by means of the optimally tuned long-range corrected LC-PBE functional and slightly less accurate by the global hybrid B3LYP. However, the experimentally observed fixed phosphorescence energy could not be reproduced because the localization pattern is different to the expectations: Instead of localizing on the triphenylene moiety - which is present in all types of polymers - the triplet state localizes on the different bridging units in the TDDFT calculations. This leads to different triplet emission energies for each type of polymer. Yet, there are clear indications that long-range corrected TDDFT has the potential to predict the triplet emission energies as well as the localization behavior more accurate than conventional local or semi-local functionals.



rate research

Read More

We present an implementation of range separated functionals utilizing the Slater-function on grids in real space in the projector augmented waves method. The screened Poisson equation is solved to evaluate the necessary screened exchange integrals on Cartesian grids. The implementation is verified against existing literature and applied to the description of charge transfer excitations. We find very slow convergence for calculations within linear response time-dependent density functional theory and unoccupied orbitals of the canonical Fock operator. Convergence can be severely improved by using Huzinagas virtual orbitals instead. This combination furthermore enables an accurate determination of long-range charge transfer excitations by means of ground-state calculations.
Colloidosomes provide a possibility to encapsulate oily substances in water in the form of core-in-shell structures. In this study, we produced microcapsules with shell from colloidal particles, where the interparticle openings are blocked by mixed layers from polymer and surfactant that prevent the leakage of cargo molecules. The particles and polymer play the role of bricks and mortar. We used hydrophilic silica particles, which were partially hydrophobized by the adsorption of potassium oleate to enable them to stabilize Pickering emulsions. Various polymers were tested to select the most appropriate one. The procedure of encapsulation is simple and includes single homogenization by ultrasound. The produced capsules are pH responsive. They are stable in aqueous phase of pH in the range 3-6, but at pH>6 they are destabilized and their cargo is released. With the optimized formulation of silica particles, polymer, oleate and NaCl, we were able to encapsulate various oils and fragrances, such as tetradecane, limonene, benzyl salicylate and citronellol. All of them have a limited and not too high solubility in water. In contrast, no stable microcapsules were obtained with oils that either have zero water solubility (mineral and silicone oil) or higher water solubility (phenoxyethanol and benzyl alcohol). By analysis of results from additional interfacial-tension and thin-film experiments, we concluded that a key factor for obtaining stable capsules is the irreversible adsorption of the polymer at the oil/water interface. The hydrophobization of the particles by surfactant adsorption (instead of silanization) plays an important role for the pH responsiveness of the produced capsules.
We have used neutron scattering to investigate the influence of concentration on the conformation of a star polymer. By varying the contrast between the solvent and isotopically labeled stars, we obtain the distributions of polymer and solvent within a star polymer from analysis of scattering data. A correlation between the local desolvation and the inward folding of star branches is discovered. From the perspective of thermodynamics, we find an analogy between the mechanism of polymer localization driven by solvent depletion and that of the hydrophobic collapse of polymers in solutions.
Direct simulation of biomolecular dynamics in thermal equilibrium is challenging due to the metastable nature of conformation dynamics and the computational cost of molecular dynamics. Biased or enhanced sampling methods may improve the convergence of expectation values of equilibrium probabilities and expectation values of stationary quantities significantly. Unfortunately the convergence of dynamic observables such as correlation functions or timescales of conformational transitions relies on direct equilibrium simulations. Markov state models are well suited to describe both, stationary properties and properties of slow dynamical processes of a molecular system, in terms of a transition matrix for a jump process on a suitable discretiza- tion of continuous conformation space. Here, we introduce statistical estimation methods that allow a priori knowledge of equilibrium probabilities to be incorporated into the estimation of dynamical observables. Both, maximum likelihood methods and an improved Monte Carlo sampling method for reversible transition ma- trices with fixed stationary distribution are given. The sampling approach is applied to a toy example as well as to simulations of the MR121-GSGS-W peptide, and is demonstrated to converge much more rapidly than a previous approach in [F. Noe, J. Chem. Phys. 128, 244103 (2008)]
50 - C. D. Pemmaraju 2018
An atomic-orbital basis set framework is presented for carrying out velocity- gauge real-time time-dependent density functional theory (TDDFT) simulations in periodic systems employing range-separated hybrid functionals. Linear optical response obtained from real-time propagation of the time-dependent Kohn-Sham equations including nonlocal exchange is considered in prototypical solid-state materials such as bulk Si, LiF and monolayer hexagonal-BN. Additionally core excitations in monolayer hexagonal-BN at the B and N K-edges are investigated and the role of long-range and short-range nonlocal exchange in capturing valence and core excitonic effects is discussed. Results obtained using this time-domain atomic orbital basis set framework are shown to be consistent with equivalent frequency-domain planewave results in the literature. The developments discussed lead to a time-domain generalized Kohn-Sham TDDFT implementation for the treatment of core and valence electron dynamics and light-matter interaction in periodic solid-state systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا