Semiclassical approach to 2d impurity bound states in Dirac systems


Abstract in English

The goal of this paper is to provide an intuitive and useful tool for analyzing the impurity bound state problem. We develop a semiclassical approach and apply it to an impurity in two dimensional systems with parabolic or Dirac like bands. Our method consists of reducing a higher dimensional problem into a sum of one dimensional ones using the two dimensional Green functions as a guide. We then analyze the one dimensional effective systems in the spirit of the wave function matching method as in the standard 1d quantum model. We demonstrate our method on two dimensional models with parabolic and Dirac-like dispersion, with the later specifically relevant to topological insulators.

Download