Do you want to publish a course? Click here

Circular, elliptic and oval billiards in a gravitational field

158   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider classical dynamical properties of a particle in a constant gravitational force and making specular reflections with circular, elliptic or oval boundaries. The model and collision map are described and a detailed study of the energy regimes is made. The linear stability of fixed points is studied, yielding exact analytical expressions for parameter values at which a period-doubling bifurcation occurs. The dynamics is apparently ergodic at certain energies in all three models, in contrast to the regularity of the circular and elliptic billiard dynamics in the field-free case. This finding is confirmed using a sensitive test involving Lyapunov weighted dynamics. In the last part of the paper a time dependence is introduced in the billiard boundary, where it is shown that for the circular billiard the average velocity saturates for zero gravitational force but in the presence of gravitational it increases with a very slow growth rate, which may be explained using Arnold diffusion. For the oval billiard, where chaos is present in the static case, the particle has an unlimited velocity growth with an exponent of approximately 1/6.



rate research

Read More

We apply a molecular dynamics scheme to analyze classically chaotic properties of a two-dimensional circular billiard system containing two Coulomb-interacting electrons. As such, the system resembles a prototype model for a semiconductor quantum dot. The interaction strength is varied from the noninteracting limit with zero potential energy up to the strongly interacting regime where the relative kinetic energy approaches zero. At weak interactions the bouncing maps show jumps between quasi-regular orbits. In the strong-interaction limit we find an analytic expression for the bouncing map. Its validity in the general case is assessed by comparison with our numerical data. To obtain a more quantitative view on the dynamics as the interaction strength is varied, we compute and analyze the escape rates of the system. Apart from very weak or strong interactions, the escape rates show consistently exponential behavior, thus suggesting strongly chaotic dynamics and a phase space without significant sticky regions within the considered time scales.
We consider the motion of a particle subjected to the constant gravitational field and scattered inelasticaly by hard boundaries which possess the shape of parabola, wedge, and hyperbola. The billiard itself performs oscillations. The linear dependence of the restitution coefficient on the particle velocity is assumed. We demonstrate that this dynamical system can be either regular or chaotic, which depends on the billiard shape and the oscillation frequency. The trajectory calculations are compared with the experimental data; a good agreement has been achieved. Moreover, the properties of the system has been studied by means of the Lyapunov exponents and the Kaplan-Yorke dimension. Chaotic and nonuniform patterns visible in the experimental data are interpreted as a result of large embedding dimension.
We study some statistical properties for the behavior of the average squared velocity -- hence the temperature -- for an ensemble of classical particles moving in a billiard whose boundary is time dependent. We assume the collisions of the particles with the boundary of the billiard are inelastic leading the average squared velocity to reach a steady state dynamics for large enough time. The description of the stationary state is made by using two different approaches: (i) heat transfer motivated by the Fourier law and, (ii) billiard dynamics using either numerical simulations and theoretical description.
170 - M. Hansen , D. Ciro , I. L. Caldas 2019
Numerical experiments of the statistical evolution of an ensemble of non-interacting particles in a time-dependent billiard with inelastic collisions, reveals the existence of three statistical regimes for the evolution of the speeds ensemble, namely, diffusion plateau, normal growth/exponential decay and stagnation. These regimes are linked numerically to the transition from Gauss-like to Boltzmann-like speed distributions. Further, the different evolution regimes are obtained analytically through velocity-space diffusion analysis. From these calculations the asymptotic root mean square of speed, initial plateau, and the growth/decay rates for intermediate number of collisions are determined in terms of the system parameters. The analytical calculations match the numerical experiments and point to a dynamical mechanism for thermalization, where inelastic collisions and a high-dimensional phase space lead to a bounded diffusion in the velocity space towards a stationary distribution function with a kind of reservoir temperature determined by the boundary oscillation amplitude and the restitution coefficient.
231 - B. Dietz , A. Richter 2015
Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا