No Arabic abstract
The installation provides direct measurements of secondary emission yield and secondary electron velocity/energy distribution in the presence of magnetic field. The measurement system is designed to be installed into superconducting solenoid with maximum field of 10T. At present time the installation under commissioning at room temperature. The structure and performance capabilities of the setup are described, first experimental results are presented.
We study the impact of a finite magnetic field on the deconfinement phase transition for heavy quarks by computing the fluctuations of the Polyakov loops. It is demonstrated that the explicit Z(3) breaking field increases with the magnetic field, leading to a decrease in the (pseudo) critical temperatures and a shrinking first-order region in the phase diagram. Phenomenological equations that capture the behaviors of the Z(3) breaking field at strong and weak magnetic fields for massive and massless quarks are given. Lastly, we explore the case of dynamical light quarks and demonstrate how an improved constituent quark mass function can enforce the correct magnetic field dependence of the deconfinement temperature in an effective model, as observed in Lattice QCD calculations.
We find a general expression for the one-loop self-energy function of neutral $rho$-meson due to $pi^+pi^-$ intermediate state in a background magnetic field, valid for arbitrary magnitudes of the field. The pion propagator used in this expression is given by Schwinger, which depends on a proper-time parameter. Restricting to weak fields, we calculate the decay rate $Gamma(rho^0 rightarrow pi^+ +pi^-)$, which changes negligibly from the vacuum value.
We consider the Dirichlet Laplacian with a constant magnetic field in a two-dimensional domain of finite measure. We determine the sharp constants in semi-classical eigenvalue estimates and show, in particular, that Polyas conjecture is not true in the presence of a magnetic field.
A CW-compatible, pulsed H- superconducting linac PIP-II is being planned to upgrade Fermilabs injection complex. To validate the front-end concept, a test accelerator (The PIP-II Injector Test, formerly known as PXIE) is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV Radio Frequency Quadrupole (RFQ) capable of operation in Continuous Wave (CW) mode, and a 10 m-long Medium Energy Beam Transport (MEBT). The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.
Fluidity of quark-gluon plasma (QGP) is studied where interaction between quark and gluon is mapped through fugacity in particle distribution function using lattice quantum chromodynamics (LQCD) results.