Do you want to publish a course? Click here

Experimental recovery of a qubit from partial collapse

524   0   0.0 ( 0 )
 Added by Jeff Sherman
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe and implement a method to restore the state of a single qubit, in principle perfectly, after it has partially collapsed. The method resembles the classical Hahn spin-echo, but works on a wider class of relaxation processes, in which the quantum state partially leaves the computational Hilbert space. It is not guaranteed to work every time, but successful outcomes are heralded. We demonstrate using a single trapped ion better performance from this recovery method than can be obtained employing projection and post-selection alone. The demonstration features a novel qubit implementation that permits both partial collapse and coherent manipulations with high fidelity.



rate research

Read More

Quantum theory predicts that entanglement can also persist in macroscopic physical systems, albeit difficulties to demonstrate it experimentally remain. Recently, significant progress has been achieved and genuine entanglement between up to 2900 atoms was reported. Here we demonstrate 16 million genuinely entangled atoms in a solid-state quantum memory prepared by the heralded absorption of a single photon. We develop an entanglement witness for quantifying the number of genuinely entangled particles based on the collective effect of directed emission combined with the nonclassical nature of the emitted light. The method is applicable to a wide range of physical systems and is effective even in situations with significant losses. Our results clarify the role of multipartite entanglement in ensemble-based quantum memories as a necessary prerequisite to achieve a high single-photon process fidelity crucial for future quantum networks. On a more fundamental level, our results reveal the robustness of certain classes of multipartite entangled states, contrary to, e.g., Schrodinger-cat states, and that the depth of entanglement can be experimentally certified at unprecedented scales.
Monolithic integration of control technologies for atomic systems is a promising route to the development of quantum computers and portable quantum sensors. Trapped atomic ions form the basis of high-fidelity quantum information processors and high-accuracy optical clocks. However, current implementations rely on free-space optics for ion control, which limits their portability and scalability. Here we demonstrate a surface-electrode ion-trap chip using integrated waveguides and grating couplers, which delivers all the wavelengths of light required for ionization, cooling, coherent operations, and quantum-state preparation and detection of Sr+ qubits. Laser light from violet to infrared is coupled onto the chip via an optical-fiber array, creating an inherently stable optical path, which we use to demonstrate qubit coherence that is resilient to platform vibrations. This demonstration of CMOS-compatible integrated-photonic surface-trap fabrication, robust packaging, and enhanced qubit coherence is a key advance in the development of portable trapped-ion quantum sensors and clocks, providing a way toward the complete, individual control of larger numbers of ions in quantum information processing systems.
We analyze the multipole excitation of atoms with twisted light, i.e., by a vortex light field that carries orbital angular momentum. A single trapped $^{40}$Ca$^+$ ion serves as a localized and positioned probe of the exciting field. We drive the $S_{1/2} to D_{5/2}$ transition and observe the relative strengths of different transitions, depending on the ions transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Gauss-Laguerre mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments.
We experimentally demonstrate the nonlocal reversal of a partial-collapse quantum measurement on two-photon entangled state. Both the partial measurement and the reversal operation are implemented in linear optics with two displaced Sagnac interferometers, which are characterized by single qubit quantum process tomography. The recovered state is measured by quantum state tomography and its nonlocality is characterized by testing the Bell inequality. Our result will be helpful in quantum communication and quantum error correction.
Cavity-free optical nonreciprocity components, which have an inherent strong asymmetric interaction between the forward- and backward-propagation direction of the probe field, are key to produce such as optical isolators and circulators. According to the proposal presented by Xia et al., [Phys. Rev. Lett. 121, 203602 (2018)], we experimentally build a device that uses cross-Kerr nonlinearity to achieve a cavity-free optical isolator and circulator. Its nonreciprocal behavior arises from the thermal motion of N-type configuration atoms, which induces a strong chiral cross-Kerr nonlinear response for the weak probe beam. We obtain a two-port optical isolator for up to 20 dB of isolation ratio in a specially designed Sagnac interferometer. The distinct propagation directions of the weak probe field determine its cross-phase shift and transmission, by which we demonstrate the accessibility of a four-port optical circulator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا