We present and analyze an a posteriori error estimator based on mesh refinement for the solution of the hypersingular boundary integral equation governing the Laplacian in three dimensions. The discretization under consideration is a non-conforming domain decomposition method based on the Nitsche technique. Assuming a saturation property, we establish quasi-reliability and efficiency of the error estimator in comparison with the error in a natural (non-conforming) norm. Numerical experiments with uniform and adaptively refined meshes confirm our theoretical results.
This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.
In this work we study a residual based a posteriori error estimation for the CutFEM method applied to an elliptic model problem. We consider the problem with non-polygonal boundary and the analysis takes into account the geometry and data approximation on the boundary. The reliability and efficiency are theoretically proved. Moreover, constants are robust with respect to how the domain boundary cuts the mesh.
The analysis of the double-diffusion model and $mathbf{H}(mathrm{div})$-conforming method introduced in [Burger, Mendez, Ruiz-Baier, SINUM (2019), 57:1318--1343] is extended to the time-dependent case. In addition, the efficiency and reliability analysis of residual-based {it a posteriori} error estimators for the steady, semi-discrete, and fully discrete problems is established. The resulting methods are applied to simulate the sedimentation of small particles in salinity-driven flows. The method consists of Brezzi-Douglas-Marini approximations for velocity and compatible piecewise discontinuous pressures, whereas Lagrangian elements are used for concentration and salinity distribution. Numerical tests confirm the properties of the proposed family of schemes and of the adaptive strategy guided by the {it a posteriori} error indicators.
Many practical problems occur due to the boundary value problem. This paper evaluates the finite element solution of the boundary value problem of Poissons equation and proposes a novel a posteriori local error estimation based on the Hypercircle method. Compared to the existing literature on qualitative error estimation, the proposed error estimation provides an explicit and sharp bound for the approximation error in the subdomain of interest and is applicable to problems without the $H^2$ regularity. The efficiency of the proposed method is demonstrated by numerical experiments for both convex and non-convex 2D domains.
We present and analyze a non-conforming domain decomposition approximation for a hypersingular operator governed by the Helmholtz equation in three dimensions. This operator appears when considering the corresponding Neumann problem in unbounded domains exterior to open surfaces. We consider small wave numbers and low-order approximations with Nitsche coupling across interfaces. Under appropriate assumptions on mapping properties of the weakly singular and hypersingular operators with Helmholtz kernel, we prove that this method converges almost quasi-optimally. Numerical experiments confirm our error estimate.
Catalina Dominguez
,Norbert Heuer
.
(2013)
.
"A posteriori error analysis for a boundary element method with non-conforming domain decomposition"
.
Norbert Heuer
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا