Memory Effects in the Electron Glass


Abstract in English

We investigate theoretically the slow non-exponential relaxation dynamics of the electron glass out of equilibrium, where a sudden change in carrier density reveals interesting memory effects. The self-consistent model of the dynamics of the occupation numbers in the system successfully recovers the general behavior found in experiments. Our numerical analysis is consistent with both the expected logarithmic relaxation and our understanding of how increasing disorder or interaction slows down the relaxation process, thus yielding a consistent picture of the electron glass. We also present a novel finite size domino effect where the connection to the leads affects the relaxation process of the electron glass in mesoscopic systems. This effect speeds up the relaxation process, and even reverses the expected effect of interaction; stronger interaction then leading to a faster relaxation.

Download