Impact dynamics of granular jets with non-circular cross-sections


Abstract in English

Using high-speed photography, we investigate two distinct regimes of the impact dynamics of granular jets with non-circular cross-sections. In the steady-state regime, we observe the formation of thin granular sheets with anisotropic shapes and show that the degree of anisotropy increases with the aspect ratio of the jets cross-section. Our results illustrate the liquid-like behavior of granular materials during impact and demonstrate that a collective hydrodynamic flow emerges from strongly interacting discrete particles. We discuss the analogy between our experiments and those from the Relativistic Heavy Ion Collider (RHIC), where similar anisotropic ejecta from a quark-gluon plasma have been observed in heavy-ion impact.

Download