Do you want to publish a course? Click here

Detection of Earth-mass and Super-Earth Trojan Planets Using Transit Timing Variation Method

105   0   0.0 ( 0 )
 Added by Nader Haghighipour
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have carried out an extensive study of the possibility of the detection of Earth-mass and super-Earth Trojan planets using transit timing variation method with the Kepler space telescope. We have considered a system consisting of a transiting Jovian-type planet in a short period orbit, and determined the induced variations in its transit timing due to an Earth-mass/super-Earth Trojan planet. We mapped a large section of the phase space around the 1:1 mean-motion resonance and identified regions corresponding to several other mean-motion resonances where the orbit of the planet would be stable. We calculated TTVs for different values of the mass and orbital elements of the transiting and perturbing bodies as well as the mass of central star, and identified orbital configurations of these objects (ranges of their orbital elements and masses) for which the resulted TTVs would be within the range of the variations of the transit timing of Keplers planetary candidates. Results of our study indicate that in general, the amplitudes of the TTVs fall within the detectable range of timing precision obtained from the Keplers long-cadence data, and depending on the parameters of the system, their magnitudes may become as large as a few hours. The probability of detection is higher for super-Earth Trojans with slightly eccentric orbits around short-period Jovian-type planets with masses slightly smaller than Jupiter. We present the details of our study and discuss the implications of its results.



rate research

Read More

115 - Nader Haghighipour 2013
Super-Earths, objects slightly larger than Earth and slightly smaller than Uranus, have found a special place in exoplanetary science. As a new class of planetary bodies, these objects have challenged models of planet formation at both ends of the spectrum and have triggered a great deal of research on the composition and interior dynamics of rocky planets in connection to their masses and radii. Being relatively easier to detect than an Earth-sized planet at 1 AU around a G star, super-Earths have become the focus of worldwide observational campaigns to search for habitable planets. With a range of masses that allows these objects to retain moderate atmospheres and perhaps even plate tectonics, super-Earths may be habitable if they maintain long-term orbits in the habitable zones of their host stars. Given that in the past two years a few such potentially habitable super-Earths have in fact been discovered, it is necessary to develop a deep understanding of the formation and dynamical evolution of these objects. This article reviews the current state of research on the formation of super-Earths and discusses different models of their formation and dynamical evolution.
We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R$_oplus$ and an upper limit on the mass of 20 M$_oplus$. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b, over 8 quarters of Kepler photometry, although neither mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, we measured through dynamical simulations a mass of $8.4 pm 1.6$ M$_oplus$ for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of $13.1 pm 2.7$ M$_oplus$ for Kepler-19c and discovered a Neptune-like planet with a mass of $20.3 pm 3.4$ M$_oplus$ on a 63 days orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that could hamper the precision in the orbital parameters when the dataset spans several years. With a density of $4.32 pm 0.87$ g cm$^{-3}$ ($0.78 pm 0.16$ $rho_oplus$) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized by transit-time variations only and the increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.
590 - M. Gillon 2010
We have used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The transiting nature of the planet could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, any transit of the planet during the observed phase window is firmly discarded, while the probability that the planet transits but that the eclipse was missed by our observations is nearly negligible (0.26%).
GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214bs mysterious atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 microns and a broad-band I-Bessel filter centered on 0.8665 microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were analyzed with MCMC simulations to measure the planetary radii as a function of wavelength. We determined radii ratios of 0.1173 for I-Bessel and 0.11735 at 2.14 microns. Our measurements indicate a flat transmission spectrum, in agreement with last atmospheric models that favor featureless spectra with clouds and high molecular weight compositions.
157 - Artie P. Hatzes 2014
Kepler-78b is a transiting Earth-mass planet in an 8.5 hr orbit discovered by the Kepler Space Mission. We performed an analysis of the published radial velocity measurements for Kepler-78 in order to derive a refined measurement for the planet mass. Kepler-78 is an active star and radial velocity variations due to activity were removed using a Floating Chunk Offset (FCO) method where an orbital solution was made to the data by allowing the velocity offsets of individual nights to vary. We show that if we had no a priori knowledge of the transit period the FCO method used as a periodogram would still have detected Kepler-78b in the radial velocity data. It can thus be effective at finding unknown short-period signals in the presence of significant activity noise. Using the FCO method while keeping the ephemeris and orbital phase fixed to the photometric values and using only data from nights where 6-10 measurements were taken results in a K-amplitude of 1.34 +/- 0.25 m/s. a planet mass of 1.31 +/- 0.24 M_Earth, and a planet density of rho = 4.5 (-2.0/+2.2) g/cm^3. Allowing the orbital phase to be a free parameter reproduces the transit phase to within the uncertainty. The corresponding density implies that Kepler-78b may have a structure that is deficient in iron and is thus more like the Moon. Although the various approaches that were used to filter out the activity of Kepler 78 produce consistent radial velocity amplitudes to within the errors, these are still too large to constrain the structure of this planet. The uncertainty in the mass for Kepler-78b is large enough to encompass models with structures ranging from Mercury-like (iron enriched) to Moon-like (iron deficient). A more accurate K-amplitude as well as a better determination of the planet radius are needed to distinguish between these models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا