Do you want to publish a course? Click here

Memory Effect and Triplet Pairing Generation in the Superconducting Exchange Biased Co/CoOx/Cu41Ni59/Nb/Cu41Ni59 Layered Heterostructure

122   0   0.0 ( 0 )
 Added by Vladimir Zdravkov
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, the resistive state of which depends on the preceding magnetic field polarity. The effect is based on a strong exchange bias (about -2 kOe) on a diluted ferromagnetic copper-nickel alloy and generation of a long range odd in frequency triplet pairing component. The difference of high and low resistance states at zero magnetic field is 90% of the normal state resistance for a transport current of 250 {mu}A and still around 42% for 10 {mu}A. Both logic states of the structure do not require biasing fields or currents in the idle mode.



rate research

Read More

Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers constitute the core of a superconducting spin valve. The switching effect of the spin valve is based on interference phenomena occurring due to the proximity effect at the S/F interfaces. A remarkable effect is only expected if the core structure exhibits strong critical temperature oscillations, or most favorable, reentrant superconductivity, when the thickness of the ferromagnetic layer is increased. The core structure has to be grown on an antiferromagnetic oxide layer (or such layer to be placed on top) to pin by exchange bias the magnetization-orientation of one of the ferromagnetic layers. In the present paper we demonstrate that this is possible, keeping the superconducting behavior of the core structure undisturbed.
92 - Jozef Spalek 2000
We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromagnetic exchange, example of which is the Hunds rule coupling. The quasiparticle energy and their wave function are determined for the three principal phases with the gap, which is momentum independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the case of triplet pairing in the two-band case leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle interchange. A comparison with the local interband spin-singlet pairing is also made.
Paramagnetic Meissner Effect (PME) was observed in Co/Nb/Co trilayers and multilayers. Measurements of the response to perpendicular external field near the superconducting transition temperature were carried out for various Nb thicknesses. PME was found only when layer thickness is no smaller than penetration depth of Nb. A classical flux compression model [Koshelev and Larkin, Phys. Rev. B 52, 13559 (1995)] was used to explain our data. We inferred that the penetration depth was a critical length, below which superconducting current density became too small and the PME could not be achieved.
We propose a microscopical theory of superconductivity in CuO$_2$ layer within the effective two-band Hubbard model in the strong correlation limit. By applying a projection technique for the matrix Green function in terms of the Hubbard operators, the Dyson equation is derived. It is proved that in the mean-field approximation d-wave superconducting pairing mediated by the conventional exchange interaction occurs. Allowing for the self-energy corrections due to kinematic interaction, a spin-fluctuation d-wave pairing is also obtained. $Tsb{c}$ dependence on the hole concentration and $bf k$-dependence of the gap function are derived. The results show that the exchange interaction (which stems from the interband hopping) prevails over the kinematic interaction (which stems from the intraband hopping).
We present a new study of magnetic structures with controllable effective exchange energy for Josephson switches and memory. As a basis for a weak link we propose to use a periodic structure comprised of ferromagnetic (F) layers spaced by thin superconductors (s). Our calculations based on Usadel equations show that switching from parallel (P) to antiparallel (AP) alignment of neighboring F layers can lead to a significant enhancement of the critical current through the junction. To control magnetic alignment we propose to use periodic system where unit cell is a pseudo spin-valve $F_1$/s/$F_2$/s with $F_1$ and $F_2$ two magnetic layers having different coercive fields. In order to check feasibility of controllable switching between AP and P states through the emph{whole} periodic structure we prepared a superlattice [Co(1.5nm)/Nb(8nm)/Co(2.5nm)/Nb(8nm)]$_6$ between two superconducting layers of Nb(25nm). Neutron scattering showed that parallel and antiparallel alignment can be organized by using of magnetic fields of only several tens of Oersted.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا