Do you want to publish a course? Click here

Exact blocking formulas for spin and gauge models

228   0   0.0 ( 0 )
 Added by Yannick Meurice
 Publication date 2013
  fields Physics
and research's language is English
 Authors Yuzhi Liu




Ask ChatGPT about the research

Using the example of the two-dimensional (2D) Ising model, we show that in contrast to what can be done in configuration space, the tensor renormalization group (TRG) formulation allows one to write exact, compact, and manifestly local blocking formulas and exact coarse grained expressions for the partition function. We argue that similar results should hold for most models studied by lattice gauge theorists. We provide exact blocking formulas for several 2D spin models (the O(2) and O(3) sigma models and the SU(2) principal chiral model) and for the 3D gauge theories with groups Z_2, U(1) and SU(2). We briefly discuss generalizations to other groups, higher dimensions and practical implementations.



rate research

Read More

We show that the partition function of all classical spin models, including all discrete Standard Statistical Models and all abelian discrete Lattice Gauge Theories (LGTs), can be expressed as a special instance of the partition function of the 4D Z_2 LGT. In this way, all classical spin models with apparently very different features are unified in a single complete model, and a physical relation between all models is established. As applications of this result, we present a new method to do mean field theory for abelian discrete LGTs with d>3, and we show that the computation of the partition function of the 4D Z_2 LGT is a computationally hard (#P-hard) problem. We also extend our results to abelian continuous models, where we show the approximate completeness of the 4D Z_2 LGT. All results are proven using quantum information techniques.
We study perturbations that break gauge symmetries in lattice gauge theories. As a paradigmatic model, we consider the three-dimensional Abelian-Higgs (AH) model with an N-component scalar field and a noncompact gauge field, which is invariant under U(1) gauge and SU(N) transformations. We consider gauge-symmetry breaking perturbations that are quadratic in the gauge field, such as a photon mass term, and determine their effect on the critical behavior of the gauge-invariant model, focusing mainly on the continuous transitions associated with the charged fixed point of the AH field theory. We discuss their relevance and compute the (gauge-dependent) exponents that parametrize the departure from the critical behavior (continuum limit) of the gauge-invariant model. We also address the critical behavior of lattice AH models with broken gauge symmetry, showing an effective enlargement of the global symmetry, from U(N) to O(2N), which reflects a peculiar cyclic renormalization-group flow in the space of the lattice AH parameters and of the photon mass.
Recently there has been remarkable progress in the complex Langevin method, which aims at solving the complex action problem by complexifying the dynamical variables in the original path integral. In particular, a new technique called the gauge cooling was introduced and the full QCD simulation at finite density has been made possible in the high temperature (deconfined) phase or with heavy quarks. Here we provide a rigorous justification of the complex Langevin method including the gauge cooling procedure. We first show that the gauge cooling can be formulated as an extra term in the complex Langevin equation involving a gauge transformation parameter, which is chosen appropriately as a function of the configuration before cooling. The probability distribution of the complexified dynamical variables is modified by this extra term. However, this modification is shown not to affect the Fokker-Planck equation for the corresponding complex weight as far as observables are restricted to gauge invariant ones. Thus we demonstrate explicitly that the gauge cooling can be used as a viable technique to satisfy the convergence conditions for the complex Langevin method. We also discuss the gauge cooling in 0-dimensional systems such as vector models or matrix models.
127 - Paolo Butera 2011
High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter into a sequence of universal amplitude-ratios which determine the critical equation of state. We have obtained a substantial extension through order 24, of the high-temperature expansions of the free energy (in presence of a magnetic field) for the Ising models with spin s >= 1/2 and for the lattice scalar field theory with quartic self-interaction, on the simple-cubic and the body-centered-cubic lattices in four, five and six spatial dimensions. A numerical analysis of the higher susceptibilities obtained from these expansions, yields results consistent with the widely accepted ideas, based on the renormalization group and the constructive approach to Euclidean quantum field theory, concerning the no-interaction (triviality) property of the continuum (scaling) limit of spin-s Ising and lattice scalar-field models at and above the upper critical dimensionality.
Path integral contour deformations have been shown to mitigate sign and signal-to-noise problems associated with phase fluctuations in lattice field theories. We define a family of contour deformations applicable to $SU(N)$ lattice gauge theory that can reduce sign and signal-to-noise problems associated with complex actions and complex observables. For observables, these contours can be used to define deformed observables with identical expectation value but different variance. As a proof-of-principle, we apply machine learning techniques to optimize the deformed observables associated with Wilson loops in two dimensional $SU(2)$ and $SU(3)$ gauge theory. We study loops consisting of up to 64 plaquettes and achieve variance reduction of up to 4 orders of magnitude.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا