Scalable control of graphene growth on 4H-SiC C-face using decomposing silicon nitride masks


Abstract in English

Patterning of graphene is key for device fabrication. We report a way to increase or reduce the number of layers in epitaxial graphene grown on the C-face (000-1) of silicon carbide by the deposition of a 120 nm to 150nm-thick silicon nitride (SiN) mask prior to graphitization. In this process we find that areas covered by a Si-rich SiN mask have one to four more layers than non-masked areas. Conversely N-rich SiN decreases the thickness by three layers. In both cases the mask decomposes before graphitization is completed. Graphene grown in masked areas show good quality as observed by Raman spectroscopy, atomic force microscopy (AFM) and transport data. By tailoring the growth parameters selective graphene growth and sub-micron patterns have been obtained.

Download