Do you want to publish a course? Click here

Measuring Directionality in Double-Beta Decay and Neutrino Interactions with Kiloton-Scale Scintillation Detectors

205   0   0.0 ( 0 )
 Added by Lindley Winslow
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Large liquid-scintillator-based detectors have proven to be exceptionally effective for low energy neutrino measurements due to their good energy resolution and scalability to large volumes. The addition of directional information using Cherenkov light and fast timing would enhance the scientific reach of these detectors, especially for searches for neutrino-less double-beta decay. In this paper, we develop a technique for extracting particle direction using the difference in arrival times for Cherenkov and scintillation light, and evaluate several detector advances in timing, photodetector spectral response, and scintillator emission spectra that could be used to make direction reconstruction a reality in a kiloton-scale detector.



rate research

Read More

Environmental radioactivity is a dominant background for rare decay search experiments, and it is difficult to completely remove such an impurity from detector vessels. We propose a scintillation balloon as the active vessel of a liquid scintillator in order to identify this undesirable radioactivity. According to our feasibility studies, the scintillation balloon enables the bismuth--polonium sequential decay to be tagged with a 99.7% efficiency, assuming a KamLAND (Kamioka Liquid scintillator AntiNeutrino Detector)-type liquid scintillator detector. This tagging of sequential decay using alpha-ray from the polonium improves the sensitivity to neutrinoless double-beta decay with rejecting beta-ray background from the bismuth.
Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO$_2$ bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from $alpha$ radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the $beta$ signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO$_2$ bolometers coupled to new light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment.
80 - Michel Sorel 2019
Xenon time projection chambers (TPCs) have become a well-established detection technology for neutrinoless double beta decay searches in $^{136}$Xe. I discuss the motivations for this choice. I describe the status and prospects of both liquid and gaseous xenon TPC projects for double beta decay.
NEXT-100 is an electroluminescent high-pressure xenon gas time projection chamber that will search for the neutrinoless double beta ($beta beta 0 u$) decay of Xe-136. The detector possesses two features of great value for $beta beta 0 u$ searches: energy resolution better than 1% FWHM at the $Q$ value of Xe-136 and track reconstruction for the discrimination of signal and background events. This combination results in excellent sensitivity, as discussed in this paper. Material-screening measurements and a detailed Monte Carlo detector simulation predict a background rate for NEXT-100 of at most $4times10^{-4}$ counts keV$^{-1}$ kg$^{-1}$ yr$^{-1}$. Accordingly, the detector will reach a sensitivity to the bbonu-decay half-life of $2.8times10^{25}$ years (90% CL) for an exposure of 100 $mathrm{kg}cdotmathrm{year}$, or $6.0times10^{25}$ years after a run of 3 effective years.
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0 ubetabeta$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and provide results from the first datasets. The demonstrator consists of an array of 20 scintillating bolometers comprised of $^{100}$Mo-enriched 0.2 kg Li$_2$MoO$_4$ crystals. The detectors are complemented by 20 thin cryogenic Ge bolometers acting as light detectors to distinguish $alpha$ from $gamma$/$beta$ events by the detection of both heat and scintillation light signals. We observe good detector uniformity, facilitating the operation of a large detector array as well as excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Based on the observed energy resolutions and light yields a separation of $alpha$ particles at much better than 99.9% with equally high acceptance for $gamma$/$beta$ events is expected for events in the region of interest for $^{100}$Mo $0 ubetabeta$. We present limits on the crystals radiopurity ($leq$3 $mu$Bq/kg of $^{226}$Ra and $leq$2 $mu$Bq/kg of $^{232}$Th). Based on these initial results we also discuss a sensitivity study for the science reach of the CUPID-Mo experiment, in particular, the ability to set the most stringent half-life limit on the $^{100}$Mo $0 ubetabeta$ decay after half a year of livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology - developed in the framework of the LUMINEU project - selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale cryogenic $0 ubetabeta$ experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا