Do you want to publish a course? Click here

Proof search for propositional abstract separation logics via labelled sequents

245   0   0.0 ( 0 )
 Added by Zhe Hou
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are abstract because they are independent of any particular concrete memory model. Their assertion languages, called propositional abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hou et al to handle Calcagno et als original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness. We present a theorem prover based on our labelled calculus for these propositional abstract separation logics.



rate research

Read More

In 1979 Richard Statman proved, using proof-theory, that the purely implicational fragment of Intuitionistic Logic (M-imply) is PSPACE-complete. He showed a polynomially bounded translation from full Intuitionistic Propositional Logic into its implicational fragment. By the PSPACE-completeness of S4, proved by Ladner, and the Goedel translation from S4 into Intuitionistic Logic, the PSPACE- completeness of M-imply is drawn. The sub-formula principle for a deductive system for a logic L states that whenever F1,...,Fk proves A, there is a proof in which each formula occurrence is either a sub-formula of A or of some of Fi. In this work we extend Statman result and show that any propositional (possibly modal) structural logic satisfying a particular formulation of the sub-formula principle is in PSPACE. If the logic includes the minimal purely implicational logic then it is PSPACE-complete. As a consequence, EXPTIME-complete propositional logics, such as PDL and the common-knowledge epistemic logic with at least 2 agents satisfy this particular sub-formula principle, if and only if, PSPACE=EXPTIME. We also show how our technique can be used to prove that any finitely many-valued logic has the set of its tautologies in PSPACE.
We study quantified propositional logics from the complexity theoretic point of view. First we introduce alternating dependency quantified boolean formulae (ADQBF) which generalize both quantified and dependency quantified boolean formulae. We show that the truth evaluation for ADQBF is AEXPTIME(poly)-complete. We also identify fragments for which the problem is complete for the levels of the exponential hierarchy. Second we study propositional team-based logics. We show that DQBF formulae correspond naturally to quantified propositional dependence logic and present a general NEXPTIME upper bound for quantified propositional logic with a large class of generalized dependence atoms. Moreover we show AEXPTIME(poly)-completeness for extensions of propositional team logic with generalized dependence atoms.
The preferential conditional logic PCL, introduced by Burgess, and its extensions are studied. First, a natural semantics based on neighbourhood models, which generalise Lewis sphere models for counterfactual logics, is proposed. Soundness and completeness of PCL and its extensions with respect to this class of models are proved directly. Labelled sequent calculi for all logics of the family are then introduced. The calculi are modular and have standard proof-theoretical properties, the most important of which is admissibility of cut, that entails a syntactic proof of completeness of the calculi. By adopting a general strategy, root-first proof search terminates, thereby providing a decision procedure for PCL and its extensions. Finally, the semantic completeness of the calculi is established: from a finite branch in a failed proof attempt it is possible to extract a finite countermodel of the root sequent. The latter result gives a constructive proof of the finite model property of all the logics considered.
In this paper we present a proof system that operates on graphs instead of formulas. Starting from the well-known relationship between formulas and cographs, we drop the cograph-conditions and look at arbitrary undirected) graphs. This means that we lose the tree structure of the formulas corresponding to the cographs, and we can no longer use standard proof theoretical methods that depend on that tree structure. In order to overcome this difficulty, we use a modular decomposition of graphs and some techniques from deep inference where inference rules do not rely on the main connective of a formula. For our proof system we show the admissibility of cut and a generalization of the splitting property. Finally, we show that our system is a conservative extension of multiplicative linear logic with mix, and we argue that our graphs form a notion of generalized connective.
We investigate the expressive power of the two main kinds of program logics for complex, non-regular program properties found in the literature: those extending propositional dynamic logic (PDL), and those extending the modal mu-calculus. This is inspired by the recent discovery of a decidable program logic called Visibly Pushdown Fixpoint Logic with Chop which extends both the modal mu-calculus and PDL over visibly pushdown languages, which, so far, constituted the ends of two pillars of decidable program logics. Here we show that this logic is not only more expressive than either of its two fragments, but in fact even more expressive than their union. Hence, the decidability border amongst program logics has been properly pushed up. We complete the picture by providing results separating all the PDL-based and modal fixpoint logics with regular, visibly pushdown and arbitrary context-free constructions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا