No Arabic abstract
We provide a family of general monogamy inequalities for global quantum discord (GQD), which can be considered as an extension of the usual discord monogamy inequality. It can be shown that those inequalities are satisfied under the similar condition for the holding of usual monogamy relation. We find that there is an intrinsic connection among them. Furthermore, we present a different type of monogamy inequality and prove that it holds under the condition that the bipartite GQDs do not increase when tracing out some subsystems. We also study the residual GQD based on the second type of monogamy inequality. As applications of those quantities, we investigate the GQDs and residual GQD in characterizing the quantum phase transition in the transverse field Ising model.
Quantum discord Q is a function of density matrix elements. The domain of such a function in the case of two-qubit system with X density matrix may consist of three subdomains at most: two ones where the quantum discord is expressed in closed analytical forms (Q_{pi/2} and Q_0) and an intermediate subdomain for which, to extract the quantum discord Q_theta, it is required to solve in general numerically a one-dimensional minimization problem to find the optimal measurement angle thetain(0,pi/2). Hence the quantum discord is given by a piecewise-analytic-numerical formula Q=min{Q_{pi/2}, Q_theta, Q_0}. Equations for determining the boundaries between these subdomains are obtained. The boundaries consist of bifurcation points. The Q_{theta} subdomains are discovered in the generalized Horodecki states, in the dynamical phase flip channel model, in the anisotropic spin systems at thermal equilibrium, in the heteronuclear dimers in an external magnetic field. We found that transitions between Q_{theta} subdomain and Q_{pi/2} and Q_0 ones occur suddenly but continuously and smoothly, i.e., nonanalyticity is hidden and can be observed in higher derivatives of discord function.
We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study of properties of quantum correlations in different quantum phases.
Quantum resource theories provide a unified framework to quantitatively analyze inherent quantum properties as resources for quantum information processing. So as to investigate the best way for quantifying resources, desirable axioms for resource quantification have been extensively studied through axiomatic approaches. However, a conventional way of resource quantification by resource measures with such desired axioms may contradict rates of asymptotic transformation between resourceful quantum states due to an approximation in the transformation. In this paper, we establish an alternative axiom, asymptotic consistency of resource measures, and we investigate asymptotically consistent resource measures, which quantify resources without contradicting the rates of the asymptotic resource transformation. We prove that relative entropic measures are consistent with the rates for a broad class of resources, i.e., all convex finite-dimensional resources, e.g., entanglement, coherence, and magic, and even some nonconvex or infinite-dimensional resources such as quantum discord, non-Markovianity, and non-Gaussianity. These results show that consistent resource measures are widely applicable to the quantitative analysis of various inherent quantum-mechanical properties.
We investigate the distribution property of one way discord in multipartite system by introducing the concept of polygamy deficit for one way discord. The difference between one way discord and quantum discord is analogue to the difference between entanglement of assistance and entanglement of formation. For tripartite pure states, two kinds of polygamy deficits are presented with the equivalent expressions and physical interpretations regardless of measurement. For four-partite pure states, we provide a condition which makes one way discord polygamy being satisfied. Those results can be applicable to multipartite quantum systems and are complementary to our understanding of the shareability of quantum correlations.
To guarantee the normal functioning of quantum devices in different scenarios, appropriate benchmarking tool kits are quite significant. Inspired by the recent progress on quantum state verification, here we establish a general framework of verifying a target unitary gate. In both the non-adversarial and adversarial scenarios, we provide efficient methods to evaluate the performance of verification strategies for any qudit unitary gate. Furthermore, we figure out the optimal strategy and its realization with local operations. Specifically, for the commonly-used quantum gates like single qubit and qudit gates, multi-qubit Clifford gates, and multi-qubit Controlled-Z(X) gates, we provide efficient verification protocols. Besides, we discuss the application of gate verification for the detection of entanglement-preserving property of quantum channels and further quantify the robustness measure of them. We believe that the gate verification is a promising way to benchmark a large-scale quantum circuit as well as to test its property.