Do you want to publish a course? Click here

The resilience of interdependent transportation networks under targeted attack

293   0   0.0 ( 0 )
 Added by Peng Zhang
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Modern world builds on the resilience of interdependent infrastructures characterized as complex networks. Recently, a framework for analysis of interdependent networks has been developed to explain the mechanism of resilience in interdependent networks. Here we extend this interdependent network model by considering flows in the networks and study the systems resilience under different attack strategies. In our model, nodes may fail due to either overload or loss of interdependency. Under the interaction between these two failure mechanisms, it is shown that interdependent scale-free networks show extreme vulnerability. The resilience of interdependent SF networks is found in our simulation much smaller than single SF network or interdependent SF networks without flows.



rate research

Read More

Computer viruses are evolving by developing spreading mechanisms based on the use of multiple vectors of propagation. The use of the social network as an extra vector of attack to penetrate the security measures in IP networks is improving the effectiveness of malware, and have therefore been used by the most aggressive viruses, like Conficker and Stuxnet. In this work we use interdependent networks to model the propagation of these kind of viruses. In particular, we study the propagation of a SIS model on interdependent networks where the state of each node is layer-independent and the dynamics in each network follows either a contact process or a reactive process, with different propagation rates. We apply this study to the case of existing multilayer networks, namely a Spanish scientific community of Statistical Physics, formed by a social network of scientific collaborations and a physical network of connected computers in each institution. We show that the interplay between layers increases dramatically the infectivity of viruses in the long term and their robustness against immunization.
In many real network systems, nodes usually cooperate with each other and form groups, in order to enhance their robustness to risks. This motivates us to study a new type of percolation, group percolation, in interdependent networks under attacks. In this model, nodes belonging to the same group survive or fail together. We develop a theoretical framework for this novel group percolation and find that the formation of groups can improve the resilience of interdependent networks significantly. However, the percolation transition is always of first order, regardless of the distribution of group sizes. As an application, we map the interdependent networks with inter-similarity structures, which attract many attentions very recently, onto the group percolation and confirm the non-existence of continuous phase transitions.
102 - Dan Lu 2016
Epidemic propagation on complex networks has been widely investigated, mostly with invariant parameters. However, the process of epidemic propagation is not always constant. Epidemics can be affected by various perturbations, and may bounce back to its original state, which is considered resilient. Here, we study the resilience of epidemics on networks, by introducing a different infection rate ${lambda_{2}}$ during SIS (susceptible-infected-susceptible) epidemic propagation to model perturbations (control state), whereas the infection rate is ${lambda_{1}}$ in the rest of time. Through simulations and theoretical analysis, we find that even for ${lambda_{2}<lambda_{c}}$, epidemics eventually could bounce back if control duration is below a threshold. This critical control time for epidemic resilience, i.e., ${cd_{max}}$ can be predicted by the diameter (${d}$) of the underlying network, with the quantitative relation ${cd_{max}sim d^{alpha}}$. Our findings can help to design a better mitigation strategy for epidemics.
Many real-world networks depend on other networks, often in non-trivial ways, to maintain their functionality. These interdependent networks of networks are often extremely fragile. When a fraction $1-p$ of nodes in one network randomly fails, the damage propagates to nodes in networks that are interdependent and a dynamic failure cascade occurs that affects the entire system. We present dynamic equations for two interdependent networks that allow us to reproduce the failure cascade for an arbitrary pattern of interdependency. We study the rich club effect found in many real interdependent network systems in which the high-degree nodes are extremely interdependent, correlating a fraction $alpha$ of the higher degree nodes on each network. We find a rich phase diagram in the plane $p-alpha$, with a triple point reminiscent of the triple point of liquids that separates a non-functional phase from two functional phases.
Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest are the dependence of the throughput on the speed of agent movement and communication range. Our computations reveal a hierarchical dependence for the former while, for the latter, we find an algebraic power law between the throughput and the communication range with an exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا