Do you want to publish a course? Click here

Thermalized Non-Equilibrated Matter against Random Matrix Theory, Quantum Chaos and Direct Interaction: Warming up

189   0   0.0 ( 0 )
 Added by Meirong Huang
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The idea of a thermalized non-equilibrated state of matter offers a conceptually new understanding of the strong angular asymmetry. In this compact review we present some clarifications, corrections and further developments of the approach, and provide a brief account of results previously discussed but not reported in the literature. The cross symmetry compound nucleus $S$-matrix correlations are obtained (i) starting from the unitary $S$-matrix representation, (ii) by explicitly taking into account a process of energy equilibration, and (iii) without taking the thermodynamic limit of an infinite number of particles in the thermalized system. It is conjectured that the long phase memory is due to the exponentially small total spin off-diagonal resonance intensity correlations. This manifestly implies that the strong angular asymmetry intimately relates to extremely small deviations of the eigenfunction distribution from Gaussian law. The spin diagonal resonance intensity correlations determine a new time/energy scale for a validity of random matrix theory. Its definition does not involve overlaps of the many-body interacting configurations with shell model non-interacting states and thus is conceptually different from the physical meaning (inverse energy relaxation time) of the spreading widths introduced by Wigner. Exact Gaussian distribution of the resonance wave functions corresponds to the instantaneous phase relaxation. We invite the nuclear reaction community for the competition to describe, as the first challenge, the strong forward peaking in the typically evaporation part of the proton spectra. This is necessary to initiate revealing long-term misconduct in the heavily cross-disciplinary field, also important for nuclear industry applications.



rate research

Read More

A characteristic feature of thermalized non-equilibrated matter is that, in spite of energy relaxation (thermalization), a phase memory of the way the strongly interacting many-body system was excited remains. In this contribution we analyze a low energy evaporating proton data in nucleon induced reactions at $simeq$62 MeV incident energy with $^{197}$Au, $^{208}$Pb, $^{209}$Bi and $^{nat}$U. Our analysis demonstrates that the thermalized non-equilibrated matter survives a cascade of several evaporating particles. Thus the experiments show that the effect of the anomalously slow phase relaxation, with upper limits of the phase relaxation widths in the range 1-10$^{-4}$ eV, is stable with respect to the multi-step evaporating cascade from the thermalized compound nuclei. We also briefly mention manifestations and implications of the thermalized non-equilibrated matter for some other fields.
422 - L. Benet , M. Bienert , S. Yu. Kun 2007
A characteristic feature of thermalized non-equilibrated matter is that, in spite of energy relaxation--equilibration, a phase memory of the way the many-body system was excited remains. As an example, we analyze data on a strong forward peaking of thermal proton yield in the Bi($gamma$,p) photonuclear reaction. New analysis shows that the phase relaxation in highly-excited heavy nuclei can be 8 orders of magnitude or even much longer than the energy relaxation. We argue that thermalized non-equilibrated matter resembles a high temperature superconducting state in quantum many-body systems. We briefly present results on the time-dependent correlation function of the many-particle density fluctuations for such a superconducting state. It should be of interest to experimentally search for manifestations of thermalized non-equilibrated matter in many-body mesoscopic systems and nanostructures.
141 - U. Smilansky 1996
New insight into the correspondence between Quantum Chaos and Random Matrix Theory is gained by developing a semiclassical theory for the autocorrelation function of spectral determinants. We study in particular the unitary operators which are the quant
The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with more detailed examples -- coming from research projects in which the authors were involved. We focus on two main topics, random quantum states and random quantum channels. We present results related to entropic quantities, entanglement of typical states, entanglement thresholds, the output set of quantum channels, and violations of the minimum output entropy of random channels.
A key goal of quantum chaos is to establish a relationship between widely observed universal spectral fluctuations of clean quantum systems and random matrix theory (RMT). For single particle systems with fully chaotic classical counterparts, the problem has been partly solved by Berry (1985) within the so-called diagonal approximation of semiclassical periodic-orbit sums. Derivation of the full RMT spectral form factor $K(t)$ from semiclassics has been completed only much later in a tour de force by Mueller et al (2004). In recent years, the questions of long-time dynamics at high energies, for which the full many-body energy spectrum becomes relevant, are coming at the forefront even for simple many-body quantum systems, such as locally interacting spin chains. Such systems display two universal types of behaviour which are termed as `many-body localized phase and `ergodic phase. In the ergodic phase, the spectral fluctuations are excellently described by RMT, even for very simple interactions and in the absence of any external source of disorder. Here we provide the first theoretical explanation for these observations. We compute $K(t)$ explicitly in the leading two orders in $t$ and show its agreement with RMT for non-integrable, time-reversal invariant many-body systems without classical counterparts, a generic example of which are Ising spin 1/2 models in a periodically kicking transverse field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا