A 162.5 MHz superconducting half-wave resonator (HWR) with geometry beta of 0.09 is being developed for Injector II of China Accelerator Driven Sub-critical System (CADS) Project at the Institute of Modern Physics (IMP). The HWR section composed of 16 HWR cavities will accelerate the proton beam from 2.1 MeV to 10 MeV. The RF and mechanical coupled analysis are essential in geometry design in order to predict the deformation of the cavity walls and the frequency shift caused by the deformation. In this paper, the detuning caused by both bath helium pressure and Lorentz force is analysed and a tuning system has been investigated and designed to compensate the detuning by deforming the cavity along the beam axis. The simulations performed with ANSYS code show that the tuning system can adjust and compensate the frequency drift due to external vibrations and helium pressure fluctuation during operation.
A 325MHz beta=0.14 superconducting half wave resonator(HWR) prototype has been developed at the Institute of High Energy Physics(IHEP), which can be applied in continuous wave (CW) high beam proton accelerators. In this paper, the electromagnetic (EM) design, multipacting simulation, mechanical optimization, and fabrication are introduced in details. In vertical test at 4.2K, the cavity reached Eacc=7MV/m with Q0=1.4*10^9 and Eacc=15.9MV/m with Q0=4.3*10^8.
A superconducting half-wave resonator (HWR) of frequency=162.5 MHz and {beta}=0.09 has been developed at Institute of Modern Physics. Mechanical stability of the low beta HWR cavity is a big challenge in cavity design and optimization. The mechanical deformations of a radio frequency superconducting cavity could be a source of instability, both in continues wave(CW) operation or in pulsed mode. Generally, the lower beta cavities have stronger Lorentz force detuning than that of the higher beta cavities. In this paper, a basic design consideration in the stiffening structure for the detuning effect caused by helium pressure and Lorentz force has been presented. The mechanical modal analysis has been investigated with finite element method(FEM). Based on these considerations, a new stiffening structure has been promoted for the HWR cavity. The computation results concerning the frequency shift show that the low beta HWR cavity with new stiffening structure has low frequency sensitivity coefficient, Lorentz force detuning coefficient KL and stable mechanical property.
Two superconducting quarter-wave resonator (QWR) prototypes have been fabricated and tested. They operate at 80.5 MHz and 161 MHz and are optimised for beta = 0.085 and beta = 0.16, respectively. The prototypes are simplifie
Numerical and experimental analysis of high power microwave generation in photonic BWO, which uses foil photonic crystal, is presented. Single frequency excitation of the below cutoff modes in the photonic BWO is analyzed and demonstrated.
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and distortion of beta function after correction was investigated.