Do you want to publish a course? Click here

Observation of Longitudinal Spin Seebeck Effect with Various Transition Metal Films

402   0   0.0 ( 0 )
 Added by Ken-ichi Uchida
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We evaluated the thermoelectric properties of longitudinal spin Seebeck devices by using ten different transition metals (TMs). Both the intensity and sign of spin Seebeck coefficients were noticeably dependent on the degree of the inverse spin Hall effect and the resistivity of each TM film. Spin dependent behaviors were also observed under ferromagnetic resonance. These results indicate that the output of the spin Seebeck devices originates in the spin current.



rate research

Read More

Lightly doped III-V semiconductor InAs is a dilute metal, which can be pushed beyond its extreme quantum limit upon the application of a modest magnetic field. In this regime, a Mott-Anderson metal-insulator transition, triggered by the magnetic field, leads to a depletion of carrier concentration by more than one order of magnitude. Here, we show that this transition is accompanied by a two-hundred-fold enhancement of the Seebeck coefficient which becomes as large as 11.3mV.K$^{-1}approx 130frac{k_B}{e}$ at T=8K and B=29T. We find that the magnitude of this signal depends on sample dimensions and conclude that it is caused by phonon drag, resulting from a large difference between the scattering time of phonons (which are almost ballistic) and electrons (which are almost localized in the insulating state). Our results reveal a path to distinguish between possible sources of large thermoelectric response in other low density systems pushed beyond the quantum limit.
290 - T. Kikkawa , D. Reitz , H. Ito 2021
Thermoelectric effects have been applied to power generators and temperature sensors that convert waste heat into electricity. The effects, however, have been limited to electrons to occur, and inevitably disappear at low temperatures due to electronic entropy quenching. Here, we report thermoelectric generation caused by nuclear spins in a solid: nuclear-spin Seebeck effect. The sample is a magnetically ordered material MnCO$_{3}$ having a large nuclear spin ($I = 5/2$) of $^{55}$Mn nuclei and strong hyperfine coupling, with a Pt contact. In the system, we observe low-temperature thermoelectric signals down to 100 mK due to nuclear-spin excitation. Our theoretical calculation in which interfacial Korringa process is taken into consideration quantitatively reproduces the results. The nuclear thermoelectric effect demonstrated here offers a way for exploring thermoelectric science and technologies at ultralow temperatures.
We investigate the inverse spin Hall voltage of a 10nm thin Pt strip deposited on the magnetic insulators Y3Fe5O12 (YIG) and NiFe2O4 (NFO) with a temperature gradient in the film plane. We observe characteristics typical of the spin Seebeck effect, although we do not observe a change of sign of the voltage at the Pt strip when it is moved from hot to cold side, which is believed to be the most striking feature of the transverse spin Seebeck effect. Therefore, we relate the observed voltages to the longitudinal spin Seebeck effect generated by a parasitic out-of-plane temperature gradient, which can be simulated by contact tips of different material and heat conductivities and by tip heating. This work gives new insights into the interpretation of transverse spin Seebeck effect experiments, which are still under discussion.
Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic insulator yttrium iron garnet (YIG) concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans, Phys. Rev. B 90, 064421 (2014). Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert (LLG) equation also including magnons back-action on thermal bath, while the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics
By using first-principles calculation, we have found that a family of 2D transition metal dichalcogenide haeckelites with square-octagonal lattice $MX_2$-4-8 ($M$=Mo, W and $X$=S, Se and Te) can host quantum spin hall effect. The phonon spectra indicate that they are dynamically stable and the largest band gap is predicted to be around 54 meV, higher than room temperature. These will pave the way to potential applications of topological insulators. We have also established a simple tight-binding model on a square-like lattice to achieve topological nontrivial quantum states, which extends the study from honeycomb lattice to square-like lattice and broads the potential topological material system greatly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا