Do you want to publish a course? Click here

Stability and superconductivity of Ca-B phases at ambient and high pressure

165   0   0.0 ( 0 )
 Added by Sheena Shah
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the search for MgB2-like phonon-mediated superconductors we have carried out a systematic density functional theory study of the Ca-B system, isoelectronic to Mg-B, at ambient and gigapascal pressures. A remarkable variety of candidate high-pressure ground states have been identified with an evolutionary crystal structure search, including a stable alkaline-earth monoboride oI8-CaB, a superconductor with an expected critical temperature (Tc) of 5.5 K. We have extended our previous study of CaB6 [Phys. Rev. Lett. 108, 102501 (2012)] to nearby stoichiometries of CaB[6+x], finding that extra boron further stabilizes the proposed B24 units. Here an explanation is given for the transformation of cP7-CaB6 into the more complex oS56 and tI56 polymorphs at high pressure. The stability of the known metallic tP20 phase of CaB4 at ambient pressure is explained from a crystal structure and chemical bonding point of view. The tP20 structure is shown to destabilize at 19 GPa relative to a semiconducting MgB4-like structure due to chemical pressure from the metal ion. The hypothetical AlB2-type structure of CaB2, previously shown to have favorable superconducting features, is demonstrated here to be unstable at all pressures; two new metallic CaB2 polymorphs with unusual boron networks stabilize at elevated pressures above 8 GPa but are found to have very low critical temperatures (Tc ~1 K). The stability of all structures has been rationalized through comparison with alkaline-earth analogs, emphasizing the importance of the size of the metal ion for the stability of borides. Our study illustrates the inverse correlation between the thermodynamic stability and superconducting properties and the necessity to carefully examine both in the design of new synthesizable superconducting materials.



rate research

Read More

252 - Liangzi Deng 2021
To raise the superconducting-transition temperature (Tc) has been the driving force for the long, sustained effort in superconductivity research. Recent progress in hydrides with Tcs up to 287 K under 267 GPa has heralded a new era of room-temperature superconductivity (RTS) with immense technological promise. Indeed, RTS has lifted the temperature barrier for the ubiquitous application of superconductivity. Unfortunately, formidable pressure is required to attain such high Tcs. The most effective relief to this impasse is to remove the pressure needed while retaining the pressure-induced Tc without pressure. Here we show such a possibility in the pure and doped high-temperature superconductor (HTS) FeSe by retaining, at ambient via pressure-quenching (PQ), its Tc up to 37 K (quadrupling that of a pristine FeSe) and other pressure-induced phases. We have also observed that some phases remain stable without pressure at up to 300 K and for at least 7 days. The observations are in qualitative agreement with our ab initio simulations using the solid-state nudged elastic band (SSNEB) method. We strongly believe that the PQ technique developed here can be adapted to the RTS hydrides and other materials of value with minimal effort.
The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur-hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component $ab,initio$ structural search in the immiscible Fe--Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above $approx36$ GPa, FeBi$_2$ and FeBi$_3$. According to our predictions, FeBi$_2$ is a metal at the border of magnetism with a conventional electron-phonon mediated superconducting transition temperature of $T_{rm c}=1.3$ K at 40 GPa. In analogy to other iron-based materials, FeBi$_2$ is possibly a non-conventional superconductor with a real $T_{rm c}$ significantly exceeding the values obtained within Bardeen-Cooper-Schrieffer (BCS) theory.
An extended study on PdS is carried out with the measurements of the resistivity, Hall coefficient, Raman scattering, and X-ray diffraction at high pressures up to 42.3 GPa. With increasing pressure, superconductivity is observed accompanying with a structural phase transition at around 19.5 GPa. The coexistence of semiconducting and metallic phases observed at normal state is examined by the Raman scattering and X-ray diffraction between 19.5 and 29.5 GPa. After that, only the metallic normal state maintains with an almost constant superconducting transition temperature. The similar evolution between the superconducting transition temperature and carrier concentration with pressure supports the phonon-mediated superconductivity in this material. These results highlight the important role of pressure played in inducing superconductivity from these narrow band-gap semiconductors.
When monoclinic monazite-type LaVO4 (space group P21/n) is squeezed up to 12 GPa at room temperature, a phase transition to another monoclinic phase has been found. The structure of the high-pressure phase of LaVO4 is indexed with the same space group (P21/n), but with a larger unit-cell in which the number of atoms is doubled. The transition leads to an 8% increase in the density of LaVO4. The occurrence of such a transition has been determined by x-ray diffraction, Raman spectroscopy, and ab initio calculations. The combination of the three techniques allows us to also characterize accurately the pressure evolution of unit-cell parameters and the Raman (and IR)-active phonons of the low- and high-pressure phase. In particular, room-temperature equations of state have been determined. The changes driven by pressure in the crystal structure induce sharp modifications in the color of LaVO4 crystals, suggesting that behind the monoclinic-to-monoclinic transition there are important changes of the electronic properties of LaVO4.
We report on detailed ac calorimetry measurements under high pressure and magnetic field of CeRhIn5. Under hydrostatic pressure the antiferromagnetic order vanishes near p_c*=2 GPa due to a first order transition. Superconductivity is found for pressures above 1.5 GPa inside the magnetic ordered phase. However, the superconductivity differ from the pure homogeneous superconducting ground state above 2 GPa. The application of an external magnetic field H || ab induces a transition inside the superconducting state above pc* which is strongly related to the re-entrance of the antiferromagnetism with field. This field-induced supplementary state vanishes above the quantum critical point in this system. The analogy to CeCoIn5 is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا