Do you want to publish a course? Click here

On the seismic scaling relations $Delta u - bar{rho}$ and $ u_{rm max}- u_{rm c}$

259   0   0.0 ( 0 )
 Added by Kevin Belkacem
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Scaling relations between asteroseismic quantities and stellar parameters are essential tools for studying stellar structure and evolution. We will address two of them, namely, the relation between the large frequency separation ($Delta u$) and the mean density ($bar{rho}$) as well as the relation between the frequency of the maximum in the power spectrum of solar-like oscillations ($ u_{rm max}$) and the cut-off frequency ($ u_{rm c}$). For the first relation, we will consider the possible sources of uncertainties and explore them with the help of a grid of stellar models. For the second one, we will show that the basic physical picture is understood and that departure from the observed relation arises from the complexity of non-adiabatic processes involving time-dependent treatment of convection. This will be further discussed on the basis of a set of 3D hydrodynamical simulation of surface convection.



rate research

Read More

Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum ($ u_{rm max}$) of solar-like oscillations and the cut-off frequency ($ u_{rm c}$). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called emph{plateau} of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between $ u_{rm max}$ and $ u_{rm c}$, with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.
In recent years the global seismic scaling relations for the frequency of maximum power and for the large frequency separation have caught the attention of various fields of astrophysics. With the exquisite photometry of textit{Kepler}, the uncertainties in the seismic observables are small enough to estimate masses and radii with a precision of only a few per cent. Even though this seems to work quite well for main-sequence stars, there is empirical evidence, mainly from studies of eclipsing binary systems, that the seismic scaling relations overestimate the mass and radius of red giants by about 15 and 5%, respectively. Model-based corrections of the $Delta u -$scaling reduce the problem but do not solve it. We re-examine the global oscillation parameters of the giants in the binary systems in order to determine their seismic fundamental parameters and find them to agree with the dynamic parameters from the literature if we adopt nonlinear scalings. We note that a curvature and glitch corrected $Delta u_mathrm{cor}$ should be preferred over a local or average values. We then compare the observed seismic parameters of the cluster giants to those scaled from independent measurements and find the same nonlinear behaviour as for the eclipsing binaries. Our final proposed scaling relations are based on both samples and cover a broad range of evolutionary stages from RGB to RC stars: $g/sqrt{T_mathrm{eff}} = ( u_mathrm{max}/ u_mathrm{max,odot})^{1.0075pm0.0021}$ and $sqrt{barrho} = (Delta u_mathrm{cor}/Delta u_mathrm{cor,odot})[eta - (0.0085pm0.0025) log^2 (Delta u_mathrm{cor}/Delta u_mathrm{cor,odot})]^{-1}$, where $g$, $T_mathrm{eff}$, and $barrho$ are in solar units, $ u_mathrm{max,odot}=3140pm5mu$Hz and $Delta u_mathrm{cor,odot}=135.08pm0.02mu$Hz , and $eta$ is equal to one in case of RGB stars and $1.04pm0.01$ for RC stars.
We have reviewed the current status of the inclusive neutrino scattering from $^{12}$C in the low energy region corresponding to the neutrino beams from the pion, muon and kaon decaying at rest. The theoretical calculations of total cross sections in various nuclear models with special emphasis on the recent experiments with the monoenergetic neutrinos from KDAR [1] along with the older experiments from KARMEN and LSND collaborations have been discussed in the context of the recent works by Akbar et al. [2] and Nikolakopoulos et al. [3]. The inadequacy of the various theoretical models used to explain the experimental results on the inclusive neutrino scattering from nuclei at low energies has been highlighted and the need for a better understanding of the nuclear medium effects beyond the impulse approximation has been emphasized.
The large separation in the low radial order regime is considered as a highly valuable observable to derive mean densities of $delta$ Scuti stars, due to its independence with rotation. Up to now, theoretical studies of this $Delta u$-${bar rho}$ relation have been limited to 1D non-rotating models, and 2D pseudo-evolutionary models. The present work aims at completing this scenario by investigating quantitatively the impact of rotation in this relation on a large grid of 1D asteroseismic models representative of $delta$ Scuti stars. These include rotation effects on both the stellar evolution and the interaction with pulsation. This allowed us to compute the stellar deformation, get the polar and equatorial radii, and correct the stellar mean densities. We found that the new $Delta u$-${bar rho}$ relation for rotating models is compatible with previous works. We explained the dispersion of the points around the linear fits as caused mainly by the distribution of the stellar mass, and partially by the evolutionary stage. The new fit is found to be close to the previous theoretical studies for lower masses ($1.3-1.81,mathrm{M}_{odot}$). However, the opposite holds for the observations: for the higher masses ($1.81-3,mathrm{M}_{odot}$) the fit is more compatible with the empirical relation. We applied these results to characterise the two well-known $delta$ Scuti stars observed by CoRoT, HD174936 and HD174966, and compared the physical parameters with those of previous works. Inclusion of rotation in the modelling causes a tendency towards greater masses, radii, luminosities and lower density values. Comparison between $Delta u$ and Gaias luminosities also allowed us to constraint the inclination angles and rotational velocities of both stars. The present results pave the way to systematically constrain the angle of inclination of $delta$ Scuti stars
299 - Y. T. Zhou , J. R. Shi , H. L. Yan 2018
The lithium abundances in a few percent of giants exceed the value predicted by the standard stellar evolution models, and the mechanisms of Li enhancement are still under debate. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey has obtained over six million spectra in the past five years, and thus provides a great opportunity to search these rare objects and to more clearly understand the mechanisms of Li enhancement. Based on the high-resolution spectrum we obtained the stellar parameters ($T_mathrm{eff}$, $log g$, [Fe/H]), and determined the elemental abundances of Li, C, N, $alpha$, Fe-peak, r-process, s-process elements, and the projected rotational velocity. For a better understanding of the effect of mixing processes, we also derived the $^{12}rm{C}$ to $^{13}rm{C}$ ratio, and constrained the evolutionary status of TYC,3251-581-1 based on the BaSTI stellar isochrones. The super Li-rich giant TYC,3251-581-1 has $rm{A(Li)} = 3.51$, the average abundance of two lithium lines at $lambda = 6708$ AA and 6104 AA based on the non-local thermodynamic equilibrium (NLTE) analysis. The atmospheric parameters show that our target locates on the luminosity function bump. The low carbon isotopic ratio ($^{12}rm{C}/^{13}rm{C} = 9.0 $), a slow rotational velocity $vsin i = 2.2 rm{km,s}^{-1}$, and no sign of IR excess suggest that additional mixing after first dredge up (FDU) should occur to bring internal synthesized Li to the surface. The low carbon ($[rm{C}/rm{Fe}] sim -0.34$ ) and enhanced nitrogen ($[rm{N}/rm{Fe}] sim 0.33$) are also consistent with the sign of mixing. Given the evolutionary stage of TYC,3251-581-1 with the relatively low $^{12}rm{C}/^{13}rm{C}$, the internal production which replenishes Li in the outer layer is the most likely origin of Li enhancement for this star.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا