Do you want to publish a course? Click here

Dissociative recombination measurements of HCl+ using an ion storage ring

124   0   0.0 ( 0 )
 Added by Oldrich Novotny
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have measured dissociative recombination of HCl+ with electrons using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present the measured absolute merged beams recombination rate coefficient for collision energies from 0 to 4.5 eV. We have also developed a new method for deriving the cross section from the measurements. Our approach does not suffer from approximations made by previously used methods. The cross section was transformed to a plasma rate coefficient for the electron temperature range from T=10 to 5000 K. We show that the previously used HCl+ DR data underestimate the plasma rate coefficient by a factor of 1.5 at T=10 K and overestimate it by a factor of 3.0 at T=300 K. We also find that the new data may partly explain existing discrepancies between observed abundances of chlorine-bearing molecules and their astrochemical models.



rate research

Read More

250 - O. Novotny , M. Berg , D. Bing 2014
We have investigated dissociative recombination (DR) of NH$^+$ with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present our measured absolute merged beams recombination rate coefficient for collision energies from 0 to 12 eV. From these data we have extracted a cross section which we have transformed to a plasma rate coefficient for the collisional plasma temperature range from $T_{rm pl} = 10$ to $18000$ K. We show that the NH$^+$ DR rate coefficient data in current astrochemical models are underestimated by up to a factor of $sim 9$. Our new data will result in predicted NH$^+$ abundances lower than calculated by present models. This is in agreement with the sensitivity limits of all observations attempting to detect NH$^+$ in interstellar clouds.
We report ionization cross section measurements for electron impact single ionization (EISI) of Fe^11+$ forming Fe^12+ and electron impact double ionization (EIDI) of Fe^11+ forming Fe^13+. The measurements cover the center-of-mass energy range from approximately 230 eV to 2300 eV. The experiment was performed using the heavy ion storage ring TSR located at the Max-Planck-Institut fur Kernphysik in Heidelberg, Germany. The storage ring approach allows nearly all metastable levels to relax to the ground state before data collection begins. We find that the cross section for single ionization is 30% smaller than was previously measured in a single pass experiment using an ion beam with an unknown metastable fraction. We also find some significant differences between our experimental cross section for single ionization and recent distorted wave (DW) calculations. The DW Maxwellian EISI rate coefficient for Fe^11+ forming Fe^12+ may be underestimated by as much as 25% at temperatures for which Fe^11+ is abundant in collisional ionization equilibrium. This is likely due to the absence of 3s excitation-autoionization (EA) in the calculations. However, a precise measurement of the cross section due to this EA channel was not possible because this process is not distinguishable experimentally from electron impact excitation of an n=3 electron to levels of n > 44 followed by field ionization in the charge state analyzer after the interaction region. Our experimental results also indicate that the double ionization cross section is dominated by the indirect process in which direct single ionization of an inner shell 2l electron is followed by autoionization resulting in a net double ionization.
On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2$^{nd}$ order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.
We have measured electron-ion recombination for Fe XII forming Fe XI using a merged beams configuration at the heavy-ion storage ring TSR located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. The measured merged beams recombination rate coefficient (MBRRC) for collision energies from 0 to 1500 eV is presented. This work uses a new method for determining the absolute MBRRC based on a comparison of the ion beam decay rate with and without the electron beam on. For energies below 75 eV, the spectrum is dominated by dielectronic recombination (DR) resonances associated with 3s-3p and 3p-3d core excitations. At higher energies we observe contributions from 3-N and 2-N core excitations DR. We compare our experimental results to state-of-the-art multi-configuration Breit-Pauli (MCBP) calculations and find significant differences, both in resonance energies and strengths. We have extracted the DR contributions from the measured MBRRC data and transformed them into a plasma recombination rate coefficient (PRRC) for temperatures in the range of 10^3 to 10^7 K. We show that the previously recommended DR data for Fe XII significantly underestimate the PRRC at temperatures relevant for both photoionized plasmas (PPs) and collisionaly ionized plasmas (CPs). This is to be contrasted with our MCBP PRRC results which agree with the experiment to within 30% at PP temperatures and even better at CP temperatures. We find this agreement despite the disagreement shown by the detailed comparison between our MCBP and experimental MBRRC results. Lastly, we present a simple parameterized form of the experimentally derived PRRC for easy use in astrophysical modelling codes.
We have measured electron-ion recombination for Fe$^{9+}$ forming Fe$^{8+}$ and for Fe$^{10+}$ forming Fe$^{9+}$ using merged beams at the TSR heavy-ion storage-ring in Heidelberg. The measured merged beams recombination rate coefficients (MBRRC) for relative energies from 0 to 75 eV are presented, covering all dielectronic recombination (DR) resonances associated with 3s->3p and 3p->3d core transitions in the spectroscopic species Fe X and Fe XI, respectively. We compare our experimental results to multi-configuration Breit-Pauli (MCBP) calculations and find significant differences. From the measured MBRRC we have extracted the DR contributions and transform them into plasma recombination rate coefficients (PRRC) for astrophysical plasmas with temperatures from 10^2 to 10^7 K. This spans across the regimes where each ion forms in photoionized or in collisionally ionized plasmas. For both temperature regimes the experimental uncertainties are 25% at a 90% confidence level. The formerly recommended DR data severely underestimated the rate coefficient at temperatures relevant for photoionized gas. At the temperatures relevant for photoionized gas, we find agreement between our experimental results and MCBP theory. At the higher temperatures relevant for collisionally ionized gas, the MCBP calculations yield a Fe XI DR rate coefficent which is significantly larger than the experimentally derived one. We present parameterized fits to our experimentally derived DR PRRC.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا