Thermodynamics of (2+1)-flavor strongly interacting matter at nonzero isospin


Abstract in English

We investigate the phase structure of strongly interacting matter at non-vanishing isospin before the onset of pion condensation in the framework of the unquenched Polyakov-Quark-Meson model with 2+1 quark flavors. We show results for the order parameters and all relevant thermodynamic quantities. In particular, we obtain a moderate change of the pressure with isospin at vanishing baryon chemical potential, whereas the chiral condensate decreases more appreciably. We compare the effective model to recent lattice data for the decrease of the pseudo-critical temperature with the isospin chemical potential. We also demonstrate the major role played by the value of the pion mass in the curvature of the transition line, and the need for lattice results with a physical pion mass. Limitations of the model at nonzero chemical potential are also discussed.

Download