Do you want to publish a course? Click here

Magnetic order in Ce0.95Nd0.05CoIn5: the Q-phase at zero magnetic field

162   0   0.0 ( 0 )
 Added by Stephane Raymond
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report neutron scattering experiment results revealing the nature of the magnetic order occurring in the heavy fermion superconductor Ce0.95Nd0.05CoIn5, a case for which an antiferromagnetic state is stabilized at a temperature below the superconducting transition one. We evidence an incommensurate order and its propagation vector is found to be identical to that of the magnetic field induced antiferromagnetic order occurring in the stoichiometric superconductor CeCoIn5, the so-called Q-phase. The commonality between these two cases suggests that superconductivity is a requirement for the formation of this kind of magnetic order and the proposed mechanism is the enhancement of nesting condition by d-wave order parameter with nodes in the nesting area.



rate research

Read More

108 - Wei Liu , LiDong Pan , Jiajia Wen 2012
We investigate the field tuned quantum phase transition in a 2D low-disorder amorphous InO$_x$ film in the frequency range of 0.05 to 16 GHz employing microwave spectroscopy. In the zero temperature limit, the AC data are consistent with a scenario where this transition is from a superconductor to a metal instead of a direct transition to an insulator. The intervening metallic phase is unusual with a small but finite resistance that is much smaller than the normal state sheet resistance at the lowest measured temperatures. Moreover, it exhibits a superconducting response on short length and time scales while global superconductivity is destroyed. We present evidence that the true quantum critical point of this 2D superconductor metal transition is located at a field $B_{sm}$ far below the conventionally defined critical field $B_{cross}$ where different isotherms of magnetoresistance cross each other. The superfluid stiffness in the low frequency limit and the superconducting fluctuation frequency from opposite sides of the transition both vanish at B $approx B_{sm}$. The lack of evidence for finite-frequency superfluid stiffness surviving $B_{cross}$ signifies that $B_{cross}$ is a crossover above which superconducting fluctuations make a vanishing contribution to DC and AC measurements.
Proposals for realizing Majorana fermions in condensed matter systems typically rely on magnetic fields, which degrade the proximitizing superconductor and plague the Majoranas detection. We propose an alternative scheme to realize Majoranas based only on phase-biased superconductors. The phases (at least three of them) can be biased by a tiny magnetic field threading macroscopic superconducting loops, focusing and enhancing the effect of the magnetic field onto the junction, or by supercurrents. We show how a combination of the superconducting phase winding and the spin-orbit phase induced in closed loops (Aharonov-Casher effect) facilitates a topological superconducting state with Majorana end states. We demontrate this scheme by an analytically tractable model as well as simulations of realistic setups comprising only conventional materials.
459 - E Hassinger , D Aoki , F Bourdarot 2009
We describe here recent inelastic neutron scattering experiments on the heavy fermion compound URu2Si2 realized in order to clarify the nature of the hidden order (HO) phase which occurs below T_0 = 17.5 K at ambient pressure. The choice was to measure at a given pressure P where the system will go, by lowering the temperature, successively from paramagnetic (PM) to HO and then to antiferromagnetic phase (AF). Furthermore, in order to verify the selection of the pressure, a macroscopic detection of the phase transitions was also achieved in situ via its thermal expansion response detected by a strain gauge glued on the crystal. Just above P_x = 0.5 GPa, where the ground state switches from HO to AF, the Q_0 = (1, 0, 0) excitation disappears while the excitation at the incommensurate wavevector Q_1 = (1.4, 0, 0) remains. Thus, the Q_0 = (1, 0, 0) excitation is intrinsic only in the HO phase. This result is reinforced by studies where now pressure and magnetic field $H$ can be used as tuning variable. Above P_x, the AF phase at low temperature is destroyed by a magnetic field larger than H_AF (collapse of the AF Q_0 = (1, 0, 0) Bragg reflection). The field reentrance of the HO phase is demonstrated by the reappearance of its characteristic Q_0 = (1, 0, 0) excitation. The recovery of a PM phase will only be achieved far above H_AF at H_M approx 35 T. To determine the P-H-T phase diagram of URu2Si2, macroscopic measurements of the thermal expansion were realized with a strain gauge. The reentrant magnetic field increases strongly with pressure. Finally, to investigate the interplay between superconductivity (SC) and spin dynamics, new inelastic neutron scattering experiments are reported down to 0.4 K, far below the superconducting critical temperature T_SC approx 1.3 K as measured on our crystal by diamagnetic shielding.
211 - S. Gerber , H. Jang , H. Nojiri 2015
Charge density wave (CDW) correlations have recently been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.
We present a study of transport properties of the heavy fermion URu$_2$Si$_2$ in pulsed magnetic field. The large Nernst response of the hidden order state is found to be suppressed when the magnetic field exceeds 35 T. The combination of resistivity, Hall and Nernst data outlines the reconstruction of the Fermi surface in the temperature-field phase diagram. The zero-field ground state is a compensated heavy-electron semi-metal, which is destroyed by magnetic field through a cascade of field-induced transitions. Above 40 T, URu$_2$Si$_2$ appears to be a polarized heavy fermions metal with a large density of carriers whose effective mass rapidly decreases with increasing magnetic polarization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا