Do you want to publish a course? Click here

A near-infrared interferometric survey of debris disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR

146   0   0.0 ( 0 )
 Added by Olivier Absil
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) Dust is expected to be ubiquitous in extrasolar planetary systems owing to the dynamical activity of minor bodies. Inner dust populations are, however, still poorly known because of the high contrast and small angular separation with respect to their host star. We aim to determine the level of near-infrared exozodiacal dust emission around a sample of 42 nearby main sequence stars with spectral types ranging from A to K and to investigate its correlation with various stellar parameters and with the presence of cold dust belts. We use high-precision K-band visibilities obtained with the FLUOR interferometer on the shortest baseline of the CHARA array. The calibrated visibilities are compared with the expected visibility of the stellar photosphere to assess whether there is an additional, fully resolved circumstellar emission. Near-infrared circumstellar emission amounting to about 1% of the stellar flux is detected around 13 of our 42 target stars. Follow-up observations showed that one of them (eps Cep) is associated with a stellar companion, while another one was detected around what turned out to be a giant star (kap CrB). The remaining 11 excesses found around single main sequence stars are most probably associated with hot circumstellar dust, yielding an overall occurrence rate of 28+8-6% for our (biased) sample. We show that the occurrence rate of bright exozodiacal discs correlates with spectral type, K-band excesses being more frequent around A-type stars. It also correlates with the presence of detectable far-infrared excess emission in the case of solar-type stars. This study provides new insight into the phenomenon of bright exozodiacal discs, showing that hot dust populations are probably linked to outer dust reservoirs in the case of solar-type stars. For A-type stars, no clear conclusion can be made regarding the origin of the detected near-infrared excesses.



rate research

Read More

461 - O. Absil , E. Di Folco , A. Merand 2008
High-precision interferometric observations of six early-type main sequence stars known to harbour cold debris discs have been obtained in the near-infrared K band with the FLUOR instrument at the CHARA Array. The measured squared visibilities are compared to the expected visibility of the stellar photospheres based on theoretical photospheric models taking into account rotational distortion, searching for potential visibility reduction at short baselines due to circumstellar emission. Our observations bring to light the presence of resolved circumstellar emission around one of the six target stars (zeta Aql) at the 5 sigma level. The morphology of the emission source cannot be directly constrained because of the sparse spatial frequency sampling of our interferometric data. Using complementary adaptive optics observations and radial velocity measurements, we find that the presence of a low-mass companion is a likely origin for the excess emission. The potential companion has a K-band contrast of four magnitudes, a most probable mass of about 0.6 Msun, and is expected to orbit between about 5.5 AU and 8 AU from its host star assuming a purely circular orbit. Nevertheless, by adjusting a physical debris disc model to the observed Spectral Energy Distribution of the zeta Aql system, we also show that the presence of hot dust within 10 AU from zeta Aql, producing a total thermal emission equal to 1.69 +- 0.31% of the photospheric flux in the K band, is another viable explanation for the observed near-infrared excess. Our re-interpretation of archival near- to far-infrared photometric measurements shows however that cold dust is not present around zeta Aql at the sensitivity limit of the IRS and MIPS instruments onboard Spitzer, and urges us to remove zeta Aql from the category of bona fide debris disc stars.
We report the results of high-angular-resolution observations that search for exozodiacal light in a sample of main sequence stars and sub-giants. Using the jouvence of the fiber linked unit for optical recombination (JouFLU) at the center for high angular resolution astronomy (CHARA) telescope array, we have observed a total of 44 stars. Out of the 44 stars, 33 are new stars added to the initial, previously published survey of 42 stars performed at CHARA with the fiber linked unit for optical recombiation (FLUOR). Since the start of the survey extension, we have detected a K-band circumstellar excess for six new stars at the ~ 1% level or higher, four of which are known or candidate binaries, and two for which the excess could be attributed to exozodiacal dust. We have also performed follow-up observations of 11 of the stars observed in the previously published survey and found generally consistent results. We do however detect a significantly larger excess on three of these follow-up targets: Altair, $upsilon$ And and $kappa$ CrB. Interestingly, the last two are known exoplanet host stars. We perform a statistical analysis of the JouFLU and FLUOR samples combined, which yields an overall exozodi detection rate of $21.7^{+5.7}_{-4.1}%$. We also find that the K-band excess in FGK-type stars correlates with the existence of an outer reservoir of cold ($lesssim 100,$K) dust at the $99%$ confidence level, while the same cannot be said for A-type stars.
161 - S. Ertel , D. Defr`ere , O.Absil 2016
Context: Extended circumstellar emission has been detected within a few 100 milli-arcsec around > 10% of nearby main sequence stars using near-infrared interferometry. Follow-up observations using other techniques, should they yield similar results or non-detections, can provide strong constraints on the origin of the emission. They can also reveal the variability of the phenomenon. Aims: We aim to demonstrate the persistence of the phenomenon over time scales of a few years and to search for variability of our previously detected excesses. Methods: Using VLTI/PIONIER in H band we have carried out multi-epoch observations of the stars for which a near-infrared excess was previously detected with the same observing technique and instrument. The detection rates and distribution of the excesses from our original survey and the follow-up observations are compared statistically. A search for variability of the excesses in our time series is carried out based on the level of the broadband excesses. Results: In 12 of 16 follow-up observations, an excess is re-detected with a significance of > 2 sigma, and in 7 of 16 follow-up observations significant excess (> 3 sigma) has been re-detected. We statistically demonstrate with very high confidence that the phenomenon persists for the majority of the systems. We also present the first detection of potential variability in two sources. Conclusions: We conclude that the phenomenon responsible for the excesses persists over time scales of a few years for the majority of the systems. However, we also find that variability intrinsic to a target can cause it to have no significant excess at the time of a specific observation.
243 - E. Di Folco 2007
We probed the first 3AU around tau Ceti and epsilon Eridani with the CHARA array (Mt Wilson, USA) in order to gauge the 2micron excess flux emanating from possible hot dust grains in the debris disks and to also resolve the stellar photospheres. High precision visibility amplitude measurements were performed with the FLUOR single mode fiber instrument and telescope pairs on baselines ranging from 22 to 241m of projected length. The short baseline observations allow us to disentangle the contribution of an extended structure from the photospheric emission, while the long baselines constrain the stellar diameter. We have detected a resolved emission around tau Cet, corresponding to a spatially integrated, fractional excess flux of 0.98 +/- 0.21 x 10^{-2} with respect to the photospheric flux in the K-band. Around eps Eri, our measurements can exclude a fractional excess of greater than 0.6x10^{-2} (3sigma). We interpret the photometric excess around tau Cet as a possible signature of hot grains in the inner debris disk and demonstrate that a faint, physical or background, companion can be safely excluded. In addition, we measured both stellar angular diameters with an unprecedented accuracy: Theta_LD(tau Cet)= 2.015 +/- 0.011 mas and Theta_LD(eps Eri)=2.126 +/- 0.014 mas.
Context. Detecting and characterizing circumstellar dust is a way to study the architecture and evolution of planetary systems. Cold dust in debris disks only traces the outer regions. Warm and hot exozodiacal dust needs to be studied in order to trace regions close to the habitable zone. Aims. We aim to determine the prevalence and to constrain the properties of hot exozodiacal dust around nearby main-sequence stars. Methods. We search a magnitude limited (H < 5) sample of 92 stars for bright exozodiacal dust using our VLTI visitor instrument PIONIER in the H-band. We derive statistics of the detection rate with respect to parameters such as the stellar spectral type and age or the presence of a debris disk in the outer regions of the systems. We derive more robust statistics by combining our sample with the results from our CHARA/FLUOR survey in the K-band. In addition, our spectrally dispersed data allows us to put constraints on the emission mechanism and the dust properties in the detected systems. Results. We find an over-all detection rate of bright exozodiacal dust in the H-band of 11% (9 out of 85 targets) and three tentative detections. The detection rate decreases from early type to late type stars and increases with the age of the host star. We do not confirm the tentative correlation between the presence of cold and hot dust found in our earlier analysis of the FLUOR sample alone. Our spectrally dispersed data suggest that either the dust is extremely hot or the emission is dominated by the scattered light in most cases. The implications of our results for the target selection of future terrestrial planet finding missions using direct imaging are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا