Do you want to publish a course? Click here

Preparing two-atom entangled state in a cavity and probing it via quantum non-demolition measurement

138   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a probabilistic scheme to prepare a maximally entangled state between a pair of two-level atoms inside a leaking cavity, without requiring precise time-controlling of the system evolution and initial atomic state. We show that the steady state of this dissipative system is a mixture of two parts: either the atoms being in their ground state or in a maximally entangled one. Then, by applying a weak probe field on the cavity mode we are able to distinguish those states without disturbing the atomic system, i.e., performing a quantum non-demolition measurement via the cavity transmission. In this scheme, one has nonzero cavity transmission only when the atomic system is in an entangled state so that a single click in the detector is enough to ensure that the atoms are in an maximally entangled state. Our scheme relies on an interference effect as it happens in electromagnetically induced transparency phenomenon so that it works out even in the limit of decay rate of the cavity mode much stronger than the atom-field coupling.



rate research

Read More

117 - M. Brune , J. Bernu , C. Guerlin 2008
The relaxation of a quantum field stored in a high-$Q$ superconducting cavity is monitored by non-resonant Rydberg atoms. The field, subjected to repetitive quantum non-demolition (QND) photon counting, undergoes jumps between photon number states. We select ensembles of field realizations evolving from a given Fock state and reconstruct the subsequent evolution of their photon number distributions. We realize in this way a tomography of the photon number relaxation process yielding all the jump rates between Fock states. The damping rates of the $n$ photon states ($0leq n leq 7$) are found to increase linearly with $n$. The results are in excellent agreement with theory including a small thermal contribution.
Quantum non-demolition (QND) measurement is an important tool in the field of quantum information processing and quantum optics. The atom-light hybrid interferometer is of great interest due to its combination of atomic spin wave and optical wave, which can be utilized for photon number QND measurement via the AC-Stark effect. In this paper, we present an actively correlated atom-light hybrid interferometer where the output is detected with the method of active correlation output readout via a nonlinear Raman process (NRP). Then this interferometer is used for QND measurement of photon number and the signal-to-noise ratio (SNR) is studied. Compared to the traditional SU(2) interferometer, the SNR in a balanced case is improved by a gain factor of $g$ of NRP. Furthermore, the performance of QND measurement is analyzed. In the presence of losses, the measurement quality is reduced. We can adjust the gain parameter of the NRP in readout stage to reduce the impact due to losses. Moreover, this scheme is a multiarm interferometer, which has the potential of multiparameter estimation with many important applications in the detection of vector fields, quantum imaging and so on.
In this paper, we propose a scheme for the controlled teleportation of an arbitrary two-atom entangled state $|phi>_{12}=a|gg>_{12}+b|ge>_{12}+c|eg>_{12}+d|ee>_{12}$ in driven cavity QED. An arbitrary two-atom entangled state can be teleported perfectly with the help of the cooperation of the third side by constructing a three-atom GHZ entangled state as the controlled channel. This scheme does not involve apparent (or direct) Bell-state measurement and is insensitive to the cavity decay and the thermal field. The probability of the success in our scheme is 1.0.
201 - Yu-Li Dong , Shi-Qun Zhu , 2012
The dynamical behavior of a coupled cavity array is investigated when each cavity contains a three-level atom. For the uniform and staggered intercavity hopping, the whole system Hamiltonian can be analytically diagonalized in the subspace of single-atom excitation. The quantum state transfer along the cavities is analyzed in detail for distinct regimes of parameters, and some interesting phenomena including binary transmission, selective localization of the excitation population are revealed. We demonstrate that the uniform coupling is more suitable for the quantum state transfer. It is shown that the initial state of polariton located in the first cavity is crucial to the transmission fidelity, and the local entanglement depresses the state transfer probability. Exploiting the metastable state, the distance of the quantum state transfer can be much longer than that of Jaynes-Cummings-Hubbard model. A higher transmission probability and longer distance can be achieved by employing a class of initial encodings and final decodings.
An extensive debate on quantum non-demolition (QND) measurement, reviewed in Grangier et al. [Nature, {bf 396}, 537 (1998)], finds that true QND measurements must have both non-classical state-preparation capability and non-classical information-damage tradeoff. Existing figures of merit for these non-classicality criteria require direct measurement of the signal variable and are thus difficult to apply to optically-probed material systems. Here we describe a method to demonstrate both criteria without need for to direct signal measurements. Using a covariance matrix formalism and a general noise model, we compute meter observables for QND measurement triples, which suffice to compute all QND figures of merit. The result will allow certified QND measurement of atomic spin ensembles using existing techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا