No Arabic abstract
We performed VLBA observations of the Broad Absorption Line Quasar FIRST,J155633.8+351758, the first radio loud BALQSO. Our observations at 15.3 GHz partially resolved a secondary component at positional angle (PA) $approx 35^{circ}$. We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within $14.3^{circ}$ of the line of sight (as implied by the high variability brightness temperature) and with the position angle (PA) of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a dusty torus (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature and optical/UV continuum polarization PA of a similar high optical polarization BALQSO, Mrk,231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus.
We report the emergence of a high velocity, broad absorption line outflow in the luminous quasar Ton 34, at z=1.928. The outflow is detected through an ultraviolet CIV broad absorption line, in a spectrum obtained in January 2006 by the Sloan Digital Sky Survey. No absorption trough was present in two different spectra acquired in 1981 at Las Campanas and Palomar observatories, indicating the emergence of the outflow in less than ~8 yr (rest-frame). The absorption line spans a velocity range from ~5,000-26,000 km s-1}, and resembles typical troughs found in Broad Absorption Line quasars (BALQSOs). We measure a balnicity index >600 (tough this value might be an underestimation due to a conservativeplacing of the continuum). The absorption trough is likely saturated, with the absorbing gas covering ~25% of the emitting region. We explore different scenarios for the emergence of this outflow, and find an existing wind moving across our line of sight to the source as the most likely explanation. This indicates that high velocity outflows (producing broad absorption troughs in BALQSOs) might be ubiquitous in quasars, yet only become observable when the wind accidentally crosses our line vision to the central source.
We present the first near-IR spectroscopy of the z=1.5 radio-loud BALQSO FIRST J155633.8+351758. Both the Balmer decrement and the slope of the rest-frame UV-optical continuum independently suggest a modest amount of extinction along the line of sight to the BLR (E(B-V)~0.5 for SMC-type screen extinction at the QSO redshift). The implied gas column density along the line of sight is much less than is implied by the weak X-ray flux of the object, suggesting that either the BLR and BAL region have a low dust-to-gas ratio, or that the rest-frame optical light encounters significantly lower mean column density lines of sight than the X-ray emission. From the rest-frame UV-optical spectrum, we are able to constrain the stellar mass content of the system. Comparing the maximal stellar mass with the black hole mass estimated from the bolometric luminosity of the QSO, we find that the ratio of the black hole to stellar mass may be comparable to the Magorrian value, which would imply that the Magorrian relation is already in place at z=1.5. However, multiple factors favor a much larger black hole to stellar mass ratio. This would imply that if the Magorrian relation characterizes the late history of QSOs, and the situation observed for F1556+3517 is typical of the early evolutionary history of QSOs, central black hole masses develop more rapidly than bulge masses. [ABRIDGED]
(Abridged) We investigate the observational characteristics of BLR geometries in which the BLR clouds bridge the gap, both in distance and scale height, between the outer accretion disc and the hot dust, forming an effective surface of a bowl. The gas dynamics are dominated by gravity, and we include the effects of transverse Doppler shift, gravitational redshift and scale-height dependent macro-turbulence. Our simple model reproduces many of the phenomena observed in broad emission-line variability studies, including (i) the absence of response in the core of the optical recombination lines on short timescales, (ii) the enhanced red-wing response on short timescales, (iii) differences between the measured delays for the HILs and LILs, and (iv) identifies turbulence as a means of producing Lorentzian profiles (esp. for LILs) in low inclination systems, and for suppressing significant continuum--emission-line delays between the line wings and line core (esp. in LILs). A key motivation of this work was to reveal the physical underpinnings of the reported measurements of SMBH masses and their uncertainties. We find that SMBH masses derived from measurements of the fwhm of the mean and rms profiles show the closest correspondence between the emission lines in a single object, even though the emission line fwhm is a more biased mass indicator with respect to inclination. The predicted large discrepancies in the SMBH mass estimates between emission lines at low inclination, as derived using the line dispersion, we suggest may be used as a means of identifying near face-on systems. Our general results do not depend on specific choices in the simplifying assumptions, but are in fact generic properties of BLR geometries with axial symmetry that span a substantial range in radially-increasing scale height supported by turbulence, which then merge into the inner dusty TOR.
The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole of $sim 2.9$ pc, similar to the dust sublimation radius of $sim 1.3$ pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of $sim 10^{8.8}-10^{9.4} ~ rm cm^{-3}$, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, while also obscure BELs as a natural coronagraph. Such a coronagraph could be found in a large number of partially obscured quasars and be a useful tool to study IELRs.
In this paper we present near infrared (NIR) imaging data of the host galaxy of the broad absorption line quasar (BALQ) at z=2.169, serendipitously found close to 3C48. The data were obtained with the ESO-VLT camera ISAAC during period 67. We find extended, rest-frame optical emission around the BALQ after subtracting a scaled stellar point spread function from the quasar nucleus in J, H, and Ks. The extended rest-frame optical emission can be interpreted as an approximately 2 Gyr old stellar population composing the host galaxy of the BALQ or a stellar population of similar age associated with an intermediate (z=1.667) absorption system spectroscopically identified by Canalizo & Stockton (1998) simultaneously. The rest-frame-UV emission on the other hand is dominated by a young, 500 Myr old stellar population. The UV/optical colors resemble a mixture of the two populations, of which the young one accounts for about 80%. Assuming that the residual emission is located at the BALQ redshift, we find that the host galaxy has a resolved flux of about 10% of the BALQ flux. The physical scale is quite compact, typical for radio quiet QSOs or Lyman break galaxies at these redshifts, indicating that the systems are still in the process of forming.