Simple prolongs of the non-positive parts of graded Lie algebras with Cartan matrix in characteristic 2


Abstract in English

Over an algebraically closed fields, an alternative to the method due to Kostrikin and Shafarevich was recently suggested. It produces all known simple finite dimensional Lie algebras in characteristic p>2. For p=2, we investigate one of the steps of this method, interpret several other simple Lie algebras, previously known only as sums of their components, as Lie algebras of vector fields. One new series of exceptional simple Lie algebras is discovered, together with its hidden supersymmetries. In characteristic 2, certain simple Lie algebras are desuperizations of simple Lie superalgebras. Several simple Lie algebras we describe as results of generalized Cartan prolongation of the non-positive parts, relative a simplest (by declaring degree of just one pair of root vectors corresponding to opposite simple roots nonzero) grading by integers, of Lie algebras with Cartan matrix are desuperizations of characteristic

Download