Do you want to publish a course? Click here

Stability estimates for an inverse problem for the magnetic Schrodinger operator

285   0   0.0 ( 0 )
 Added by Pedro Caro
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we prove stable determination of an inverse boundary value problem associated to a magnetic Schrodinger operator assuming that the magnetic and electric potentials are essentially bounded and the magnetic potentials admit a Holder-type modulus of continuity in the sense of $L^2$.



rate research

Read More

In this article, we study stability estimates when recovering magnetic fields and electric potentials in a simply connected open subset in $R^n$ with $n geq 3$, from measurements on open subsets of its boundary. This inverse problem is associated with a magnetic Schrodinger operator. Our estimates are quantitati
In this article, stability estimates are given for the determination of the zeroth-order bounded perturbations of the biharmonic operator when the boundary Neumann measurements are made on the whole boundary and on slightly more than half the boundary, respectively. For the case of measurements on the whole boundary, the stability estimates are of ln-type and for the case of measurements on slightly more than half of the boundary, we derive estimates that are of ln ln-type.
We study the inverse problem of determining the magnetic field and the electric potential entering the Schrodinger equation in an infinite 3D cylindrical domain, by Dirichlet-to-Neumann map. The cylindrical domain we consider is a closed waveguide in the sense that the cross section is a bounded domain of the plane. We prove that the knowledge of the Dirichlet-to-Neumann map determines uniquely, and even Holder-stably, the magnetic field induced by the magnetic potential and the electric potential. Moreover, if the maximal strength of both the magnetic field and the electric potential, is attained in a fixed bounded subset of the domain, we extend the above results by taking finitely extended boundary observations of the solution, only.
In this article, high frequency stability estimates for the determination of the potential in the Schrodinger equation are studied when the boundary measurements are made on slightly more than half the boundary. The estimates reflect the increasing stability property with growing frequency.
We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspace of the link manifold satisfies a weighted $L^1to L^infty$ dispersive estimate. In odd dimensions, the decay rate we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension, but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of $t^{1/2}$ compared to the sharp Euclidean estimate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا