UPt$_3$ as a Topological Crystalline Superconductor


Abstract in English

We investigate the topological aspect of the spin-triplet $f$-wave superconductor UPt$_3$ through microscopic calculations of edge- and vortex-bound states based on the quasiclassical Eilenberger and Bogoliubov-de Gennes theories. It is shown that a gapless and linear dispersion exists at the edge of the $ab$-plane. This forms a Majorana valley, protected by the mirror chiral symmetry. We also demonstrate that, with increasing magnetic field, vortex-bound quasiparticles undergo a topological phase transition from topologically trivial states in the double-core vortex to zero-energy states in the normal-core vortex. As long as the $d$-vector is locked into the $ab$-plane, the mirror symmetry holds the Majorana property of the zero-energy states, and thus UPt$_3$ preserves topological crystalline superconductivity that is robust against the crystal field and spin-orbit interaction.

Download