Do you want to publish a course? Click here

Noisy soccer balls

52   0   0.0 ( 0 )
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

In her Comment arXiv:1202.4066 [hep-th] Hossenfelder proposes a generalization of the results we reported in Phys. Rev. D84 (2011) 087702 and argues that thermal fluctuations introduce incurable pathologies for the description of macroscopic bodies in the relative-locality framework. We here show that Hossenfelders analysis, while raising a very interesting point, is incomplete and leads to incorrect conclusions. Her estimate for the fluctuations did not take into account some contributions from the geometry of momentum space which must be included at the relevant order of approximation. Using the full expression here derived one finds that thermal fluctuations are not in general large for macroscopic bodies in the relative-locality framework. We find that such corrections can be unexpectedly large only for some choices of momentum-space geometry, and we comment on the possibility of developing a phenomenology suitable for possibly ruling out such geometries of momentum space.



rate research

Read More

We study non-topological solitons, so called Q-balls, which carry a non-vanishing Noether charge and arise as lump solutions of self-interacting complex scalar field models. Explicit examples of new axially symmetric non-spinning Q-ball solutions that have not been studied so far are constructed numerically. These solutions can be interpreted as angular excitations of the fundamental $Q$-balls and are related to the spherical harmonics. Correspondingly, they have higher energy and their energy densities possess two local maxima on the positive z-axis. We also study two Q-balls interacting via a potential term in (3+1) dimensions and construct examples of stationary, solitonic-like objects in (3+1)-dimensional flat space-time that consist of two interacting global scalar fields. We concentrate on configurations composed of one spinning and one non-spinning Q-ball and study the parameter-dependence of the energy and charges of the configuration. In addition, we present numerical evidence that for fixed values of the coupling constants two different types of 2-Q-ball solutions exist: solutions with defined parity, but also solutions which are asymmetric with respect to reflexion through the x-y-plane.
In this paper we numerically construct localised black hole solutions at the IR bottom of the confining geometry of the AdS soliton. These black holes should be thought as the finite size analogues of the domain wall solutions that have appeared previously in the literature. From the dual CFT point of view, these black holes correspond to finite size balls of deconfined plasma surrounded by the confining vacuum. The plasma ball solutions are parametrised by the temperature. For temperatures well above the deconfinement transition, the dual black holes are small and round and they are well-described by the asymptotically flat Schwarzschild solution. On the other hand, as the temperature approaches the deconfinement temperature, the black holes look like pancakes which are extended along the IR bottom of the space-time. On top of these backgrounds, we compute various probes of confinement/deconfinement such as temporal Wilson loops and entanglement entropy.
Scalar field theories with particular U(1)-symmetric potentials contain non-topological soliton solutions called Q-balls. Promoting the U(1) to a gauge symmetry leads to the more complicated situation of gauged Q-balls. The soliton solutions to the resulting set of nonlinear differential equations have markedly different properties, such as a maximal possible size and charge. Despite these differences, we discover a relation that allows one to extract the properties of gauged Q-balls (such as the radius, charge, and energy) from the more easily obtained properties of global Q-balls. These results provide a new guide to understanding gauged Q-balls as well as providing simple and accurate analytical characterization of the Q-ball properties.
We show, by numerical calculations, that there exist three-types of stationary and spherically symmetric nontopological soliton solutions (NTS-balls) with large sizes in the coupled system consisting of a complex matter scalar field, a U(1) gauge field, and a complex Higgs scalar field that causes spontaneously symmetry breaking. Under the assumption of symmetries, the coupled system reduces to a dynamical system with three degrees of freedoms governed by an effective action. The effective potential in the action has stationary points. The NTS-balls with large sizes are described by bounce solutions that start off an initial stationary point, and traverse to the final stationary point, vacuum stationary point. According to the choice of the initial stationary point, there appear three types of NTS-balls: dust balls, shell balls, and potential balls with respect to their internal structures.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا