SU(2)-Cyclic Surgeries on Knots


Abstract in English

A surgery on a knot in 3-sphere is called SU(2)-cyclic if it gives a manifold whose fundamental group has no non-cyclic SU(2) representations. Using holonomy perturbations on the Chern-Simons functional, we prove that the distance of two SU(2)-cyclic surgery coefficients is bounded by the sum of the absolute values of their numerators. This is an analog of Culler-Gordon-Luecke-Shalens cyclic surgery theorem.

Download