Do you want to publish a course? Click here

A Trace Formula for Long-Range Perturbations of the Landau Hamiltonian

230   0   0.0 ( 0 )
 Added by Georgi Raikov
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the Landau Hamiltonian perturbed by a long-range electric potential $V$. The spectrum of the perturbed operator consists of eigenvalue clusters which accumulate to the Landau levels. First, we obtain an estimate of the rate of the shrinking of these clusters to the Landau levels as the number of the cluster $q$ tends to infinity. Further, we assume that there exists an appropriate $V$, homogeneous of order $-rho$ with $rho in (0,1)$, such that $V(x) = V(x) + O(|x|^{-rho - epsilon})$, $epsilon > 0$, as $|x| to infty$, and investigate the asymptotic distribution of the eigenvalues within a given cluster, as $q to infty$. We obtain an explicit description of the asymptotic density of the eigenvalues in terms of the mean-value transform of $V$.



rate research

Read More

We consider metric perturbations of the Landau Hamiltonian. We investigate the asymptotic behaviour of the discrete spectrum of the perturbed operator near the Landau levels, for perturbations with power-like decay, exponential decay or compact support.
We consider the Schrodinger operator with constant magnetic field defined on the half-plane with a Dirichlet boundary condition, $H_0$, and a decaying electric perturbation $V$. We analyze the spectral density near the Landau levels, which are thresholds in the spectrum of $H_0,$ by studying the Spectral Shift Function (SSF) associated to the pair $(H_0+V,{H_0})$. For perturbations of a fixed sign, we estimate the SSF in terms of the eigenvalue counting function for certain compact operators. If the decay of $V$ is power-like, then using pseudodifferential analysis, we deduce that there are singularities at the thresholds and we obtain the corresponding asymptotic behavior of the SSF. Our technique gives also results for the Neumann boundary condition.
We consider a class of Jacobi matrices with unbounded entries in the so called critical (double root, Jordan box) case. We prove a formula for the spectral density of the matrix which relates its spectral density to the asymptotics of orthogonal polynomials associated with the matrix.
342 - Remi Carles 2012
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We show how the nonlinear system may appear from different physical models. We focus our attention on the large time behavior of the solution. We show the existence of a nonlinear scattering operator, which is reminiscent of long range scattering for the nonlinear Schrodinger equation, and which can be compared with its linear counterpart.
We consider finite area convex Euclidean circular sectors. We prove a variational Polyakov formula which shows how the zeta-regularized determinant of the Laplacian varies with respect to the opening angle. Varying the angle corresponds to a conformal deformation in the direction of a conformal factor with a logarithmic singularity at the origin. We compute explicitly all the contributions to this formula coming from the different parts of the sector. In the process, we obtain an explicit expression for the heat kernel on an infinite area sector using Carslaw-Sommerfelds heat kernel. We also compute the zeta-regularized determinant of rectangular domains of unit area and prove that it is uniquely maximized by the square.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا