Do you want to publish a course? Click here

SN 2007uy - metamorphosis of an aspheric Type Ib explosion

271   0   0.0 ( 0 )
 Added by Rupak Roy
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The supernovae of Type Ibc are rare and the detailed characteristics of these explosions have been studied only for a few events. Unlike Type II SNe, the progenitors of Type Ibc have never been detected in pre-explosion images. So, to understand the nature of their progenitors and the characteristics of the explosions, investigation of proximate events are necessary. Here we present the results of multi-wavelength observations of Type Ib SN 2007uy in the nearby ($sim$ 29.5 Mpc) galaxy NGC 2770. Analysis of the photometric observations revealed this explosion as an energetic event with peak absolute R band magnitude $-18.5pm0.16$, which is about one mag brighter than the mean value ($-17.6pm0.6$) derived for well observed Type Ibc events. The SN is highly extinguished, E(B-V) = 0.63$pm$0.15 mag, mainly due to foreground material present in the host galaxy. From optical light curve modeling we determine that about 0.3 M$_{odot}$ radioactive $^{56}$Ni is produced and roughly 4.4 M$_{odot}$ material is ejected during this explosion with liberated energy $sim 15times10^{51}$ erg, indicating the event to be an energetic one. Through optical spectroscopy, we have noticed a clear aspheric evolution of several line forming regions, but no dependency of asymmetry is seen on the distribution of $^{56}$Ni inside the ejecta. The SN shock interaction with the circumburst material is clearly noticeable in radio follow-up, presenting a Synchrotron Self Absorption (SSA) dominated light curve with a contribution of Free Free Absorption (FFA) during the early phases. Assuming a WR star, with wind velocity $ga 10^3 {rm km s}^{-1}$, as a progenitor, we derive a lower limit to the mass loss rate inferred from the radio data as $dot{M} ga 2.4times10^{-5}$ M$_{odot}$, yr$^{-1}$, which is consistent with the results obtained for other Type Ibc SNe bright at radio frequencies.



rate research

Read More

100 - T. Nagao , A. Cikota , F. Patat 2019
Type IIP supernovae (SNe IIP), which represent the most common class of core-collapse (CC) SNe, show a rapid increase in continuum polarization just after entering the tail phase. This feature can be explained by a highly asymmetric helium core, which is exposed when the hydrogen envelope becomes transparent. Here we report the case of a SN IIP (SN~2017gmr) that shows an unusually early rise of the polarization, $gtrsim 30$ days before the start of the tail phase. This implies that SN~2017gmr is an SN IIP that has very extended asphericity. The asymmetries are not confined to the helium core, but reach out to a significant part of the outer hydrogen envelope, hence clearly indicating a marked intrinsic diversity in the aspherical structure of CC explosions. These observations provide new constraints on the explosion mechanism, where viable models must be able to produce such extended deviations from spherical symmetry, and account for the observed geometrical diversity.
Stripped-envelope supernovae (SE-SNe) show a wide variety of photometric and spectroscopic properties. This is due to the different potential formation channels and the stripping mechanism that allows for a large diversity within the progenitors outer envelop compositions. Here, the photometric and spectroscopic observations of SN 2020cpg covering $sim 130$ days from the explosion date are presented. SN 2020cpg ($z = 0.037$) is a bright SE-SNe with the $B$-band peaking at $M_{B} = -17.75 pm 0.39$ mag and a maximum pseudo-bolometric luminosity of $L_mathrm{max} = 6.03 pm 0.01 times 10^{42} mathrm{ergs^{-1}}$. Spectroscopically, SN 2020cpg displays a weak high and low velocity H$alpha$ feature during the photospheric phase of its evolution, suggesting that it contained a detached hydrogen envelope prior to explosion. From comparisons with spectral models, the mass of hydrogen within the outer envelope was constrained to be $sim 0.1 mathrm{M}_{odot}$. From the pseudo-bolometric light curve of SN 2020cpg a $^{56}$Ni mass of $M_mathrm{Ni} sim 0.27 pm 0.08$ $mathrm{M}_{odot}$ was determined using an Arnett-like model. The ejecta mass and kinetic energy of SN 2020cpg were determined using an alternative method that compares the light curve of SN 2020cpg and several modelled SE-SNe, resulting in an ejecta mass of $M_mathrm{ejc} sim 5.5 pm 2.0$ $mathrm{M}_{odot}$ and a kinetic energy of $E_mathrm{K} sim 9.0 pm 3.0 times 10^{51} mathrm{erg}$. The ejected mass indicates a progenitor mass of $18 - 25 mathrm{M}_{odot}$. The use of the comparative light curve method provides an alternative process to the commonly used Arnett-like model to determine the physical properties of SE-SNe.
We present Hubble Space Telescope imaging of a pre-explosion counterpart to SN 2019yvr obtained 2.6 years before its explosion as a type Ib supernova (SN Ib). Aligning to a post-explosion Gemini-S/GSAOI image, we demonstrate that there is a single source consistent with being the SN 2019yvr progenitor system, the second SN Ib progenitor candidate after iPTF13bvn. We also analyzed pre-explosion Spitzer/IRAC imaging, but we do not detect any counterparts at the SN location. SN 2019yvr was highly reddened, and comparing its spectra and photometry to those of other, less extinguished SNe Ib we derive $E(B-V)=0.51substack{+0.27-0.16}$ mag for SN 2019yvr. Correcting photometry of the pre-explosion source for dust reddening, we determine that this source is consistent with a $log(L/L_{odot}) = 5.3 pm 0.2$ and $T_{mathrm{eff}} = 6800substack{+400-200}$ K star. This relatively cool photospheric temperature implies a radius of 320$substack{+30-50} R_{odot}$, much larger than expectations for SN Ib progenitor stars with trace amounts of hydrogen but in agreement with previously identified SN IIb progenitor systems. The photometry of the system is also consistent with binary star models that undergo common envelope evolution, leading to a primary star hydrogen envelope mass that is mostly depleted but seemingly in conflict with the SN Ib classification of SN 2019yvr. SN 2019yvr had signatures of strong circumstellar interaction in late-time ($>$150 day) spectra and imaging, and so we consider eruptive mass loss and common envelope evolution scenarios that explain the SN Ib spectroscopic class, pre-explosion counterpart, and dense circumstellar material. We also hypothesize that the apparent inflation could be caused by a quasi-photosphere formed in an extended, low-density envelope or circumstellar matter around the primary star.
We present a set of photometric and spectroscopic observations of a bright Type Ib supernova SN 2012au from -6d until ~+150d after maximum. The shape of its early R-band light curve is similar to that of an average Type Ib/c supernova. The peak absolute magnitude is M_R=-18.7+-0.2 mag, which suggests that this supernova belongs to a very luminous group among Type Ib supernovae. The line velocity of He I {lambda}5876 is about 15,000 km/s around maximum, which is much faster than that in a typical Type Ib supernova. From the quasi-bolometric peak luminosity of (6.7+-1.3)x10^(42) erg/s, we estimate the Ni mass produced during the explosion as ~0.30 Msun. We also give a rough constraint to the ejecta mass 5-7 Msun and the kinetic energy (7-18)x10^(51) erg. We find a weak correlation between the peak absolute magnitude and He I velocity among Type Ib SNe. The similarities to SN 1998bw in the density structure inferred from the light curve model as well as the large peak bolometric luminosity suggest that SN 2012au had properties similar to energetic Type Ic supernovae.
We present the detailed optical evolution of a type Ib SN 2015dj in NGC 7371, using data spanning up to $sim$ 170 days after discovery. SN 2015dj shares similarity in light curve shape with SN 2007gr and peaks at M$_{V}$ = $-17.37pm$0.02 mag. Analytical modelling of the quasi bolometric light curve yields 0.06$pm$0.01 M$_{odot}$ of $^{56}$Ni, ejecta mass $M_{rm ej} = 1.4^{+1.3}_{-0.5}$ msol, and kinetic energy $E_{rm k} = 0.7^{+0.6}_{-0.3} times 10^{51}$ erg. The spectral features show a fast evolution and resemble those of spherically symmetric ejecta. The analysis of nebular phase spectral lines indicate a progenitor mass between 13-20 M$_{odot}$ suggesting a binary scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا