Do you want to publish a course? Click here

Random walk with priorities in communication-like networks

173   0   0.0 ( 0 )
 Added by Shai Carmi
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a model for a random walk of two classes of particles (A and B). Where both species are present in the same site, the motion of As takes precedence over that of Bs. The model was originally proposed and analyzed in Maragakis et al., Phys. Rev. E 77, 020103 (2008); here we provide additional results. We solve analytically the diffusion coefficients of the two species in lattices for a number of protocols. In networks, we find that the probability of a B particle to be free decreases exponentially with the node degree. In scale-free networks, this leads to localization of the Bs at the hubs and arrest of their motion. To remedy this, we investigate several strategies to avoid trapping of the Bs: moving an A instead of the hindered B; allowing a trapped B to hop with a small probability; biased walk towards non-hub nodes; and limiting the capacity of nodes. We obtain analytic results for lattices and networks, and discuss the advantages and shortcomings of the possible strategies.



rate research

Read More

192 - Thimo Rohlf 2008
We calculate analytically the critical connectivity $K_c$ of Random Threshold Networks (RTN) for homogeneous and inhomogeneous thresholds, and confirm the results by numerical simulations. We find a super-linear increase of $K_c$ with the (average) absolute threshold $|h|$, which approaches $K_c(|h|) sim h^2/(2ln{|h|})$ for large $|h|$, and show that this asymptotic scaling is universal for RTN with Poissonian distributed connectivity and threshold distributions with a variance that grows slower than $h^2$. Interestingly, we find that inhomogeneous distribution of thresholds leads to increased propagation of perturbations for sparsely connected networks, while for densely connected networks damage is reduced; the cross-over point yields a novel, characteristic connectivity $K_d$, that has no counterpart in Boolean networks. Last, local correlations between node thresholds and in-degree are introduced. Here, numerical simulations show that even weak (anti-)correlations can lead to a transition from ordered to chaotic dynamics, and vice versa. It is shown that the naive mean-field assumption typical for the annealed approximation leads to false predictions in this case, since correlations between thresholds and out-degree that emerge as a side-effect strongly modify damage propagation behavior.
We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several types of pseudo-random-number sequences. This model provides qualitative understanding of the bias mechanism in a class of cluster Monte Carlo algorithms.
179 - E. Bogomolny , O. Giraud 2013
For random matrices with tree-like structure there exists a recursive relation for the local Green functions whose solution permits to find directly many important quantities in the limit of infinite matrix dimensions. The purpose of this note is to investigate and compare expressions for the spectral density of random regular graphs, based on easy approximations for real solutions of the recursive relation valid for trees with large coordination number. The obtained formulas are in a good agreement with the results of numerical calculations even for small coordination number.
We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field (RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity becomes a controllable parameter in our theory, allowing us to answer what the differences are between this description and the mean-field theory i.e., the fully connected theory. We have considered the random network random field Ising model where the spin exchange interaction as well as the RF are random variables following a Gaussian distribution. The results were found within the replica symmetric (RS) approximation, whose stability is obtained using the two-replica method. This also puts our work in the context of a broader discussion, which is the RS stability as a function of the connectivity. In particular, our results show that for small connectivity there is a region at zero temperature where the RS solution remains stable above a given value of the magnetic field no matter the strength of RF. Consequently, our results show important differences with the crossover between the RF and SG regimes predicted by the fully connected theory.
We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-Renyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The results are in agreement with numerical simulations for a broad range of network sizes and connectivities. The average and standard deviation of the distribution are also obtained. In the case that the mean degree scales as $N^{alpha}$ with the network size, the distribution becomes extremely narrow in the asymptotic limit, namely almost all pairs of nodes are equidistant, at distance $d=lfloor 1/alpha rfloor$ from each other. The distribution of shortest path lengths between nodes of degree $m$ and the rest of the network is calculated. Its average is shown to be a monotonically decreasing function of $m$, providing an interesting relation between a local property and a global property of the network. The methodology presented here can be applied to more general classes of networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا